Cusp (singularity)

Last updated
An ordinary cusp at (0, 0) on the semicubical parabola x - y = 0 Cusp.svg
An ordinary cusp at (0, 0) on the semicubical parabola xy = 0

In mathematics, a cusp, sometimes called spinode in old texts, is a point on a curve where a moving point must reverse direction. A typical example is given in the figure. A cusp is thus a type of singular point of a curve.

Contents

For a plane curve defined by an analytic, parametric equation

a cusp is a point where both derivatives of f and g are zero, and the directional derivative, in the direction of the tangent, changes sign (the direction of the tangent is the direction of the slope ). Cusps are local singularities in the sense that they involve only one value of the parameter t, in contrast to self-intersection points that involve more than one value. In some contexts, the condition on the directional derivative may be omitted, although, in this case, the singularity may look like a regular point.

For a curve defined by an implicit equation

which is smooth, cusps are points where the terms of lowest degree of the Taylor expansion of F are a power of a linear polynomial; however, not all singular points that have this property are cusps. The theory of Puiseux series implies that, if F is an analytic function (for example a polynomial), a linear change of coordinates allows the curve to be parametrized, in a neighborhood of the cusp, as

where a is a real number, m is a positive even integer, and S(t) is a power series of order k (degree of the nonzero term of the lowest degree) larger than m. The number m is sometimes called the order or the multiplicity of the cusp, and is equal to the degree of the nonzero part of lowest degree of F. In some contexts, the definition of a cusp is restricted to the case of cusps of order two—that is, the case where m = 2.

The definitions for plane curves and implicitly-defined curves have been generalized by René Thom and Vladimir Arnold to curves defined by differentiable functions: a curve has a cusp at a point if there is a diffeomorphism of a neighborhood of the point in the ambient space, which maps the curve onto one of the above-defined cusps.

Classification in differential geometry

Consider a smooth real-valued function of two variables, say f (x, y) where x and y are real numbers. So f is a function from the plane to the line. The space of all such smooth functions is acted upon by the group of diffeomorphisms of the plane and the diffeomorphisms of the line, i.e. diffeomorphic changes of coordinate in both the source and the target. This action splits the whole function space up into equivalence classes, i.e. orbits of the group action.

One such family of equivalence classes is denoted by where k is a non-negative integer. A function f is said to be of type if it lies in the orbit of i.e. there exists a diffeomorphic change of coordinate in source and target which takes f into one of these forms. These simple forms are said to give normal forms for the type -singularities. Notice that the are the same as the since the diffeomorphic change of coordinate in the source takes to So we can drop the ± from notation.

The cusps are then given by the zero-level-sets of the representatives of the equivalence classes, where n ≥ 1 is an integer. [ citation needed ]

Examples

  1. Having a degenerate quadratic part, i.e. the quadratic terms in the Taylor series of f form a perfect square, say L(x, y)2, where L(x, y) is linear in x and y, and
  2. L(x, y) does not divide the cubic terms in the Taylor series of f (x, y).

For a type A4-singularity we need f to have a degenerate quadratic part (this gives type A≥2), that Ldoes divide the cubic terms (this gives type A≥3), another divisibility condition (giving type A≥4), and a final non-divisibility condition (giving type exactly A4).

To see where these extra divisibility conditions come from, assume that f has a degenerate quadratic part L2 and that L divides the cubic terms. It follows that the third order taylor series of f is given by where Q is quadratic in x and y. We can complete the square to show that We can now make a diffeomorphic change of variable (in this case we simply substitute polynomials with linearly independent linear parts) so that where P1 is quartic (order four) in x1 and y1. The divisibility condition for type A≥4 is that x1 divides P1. If x1 does not divide P1 then we have type exactly A3 (the zero-level-set here is a tacnode). If x1 divides P1 we complete the square on and change coordinates so that we have where P2 is quintic (order five) in x2 and y2. If x2 does not divide P2 then we have exactly type A4, i.e. the zero-level-set will be a rhamphoid cusp.

Applications

An ordinary cusp occurring as the caustic of light rays in the bottom of a teacup. Caustic00.jpg
An ordinary cusp occurring as the caustic of light rays in the bottom of a teacup.

Cusps appear naturally when projecting into a plane a smooth curve in three-dimensional Euclidean space. In general, such a projection is a curve whose singularities are self-crossing points and ordinary cusps. Self-crossing points appear when two different points of the curves have the same projection. Ordinary cusps appear when the tangent to the curve is parallel to the direction of projection (that is when the tangent projects on a single point). More complicated singularities occur when several phenomena occur simultaneously. For example, rhamphoid cusps occur for inflection points (and for undulation points) for which the tangent is parallel to the direction of projection.

In many cases, and typically in computer vision and computer graphics, the curve that is projected is the curve of the critical points of the restriction to a (smooth) spatial object of the projection. A cusp appears thus as a singularity of the contour of the image of the object (vision) or of its shadow (computer graphics).

Caustics and wave fronts are other examples of curves having cusps that are visible in the real world.

See also

Related Research Articles

<span class="mw-page-title-main">Diffeomorphism</span> Isomorphism of smooth manifolds; a smooth bijection with a smooth inverse

In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable.

<span class="mw-page-title-main">Elliptic curve</span> Algebraic curve

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for:

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

<span class="mw-page-title-main">Tangent</span> In mathematics, straight line touching a plane curve without crossing it

In geometry, the tangent line to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve y = f(x) at a point x = c if the line passes through the point (c, f ) on the curve and has slope f'(c), where f' is the derivative of f. A similar definition applies to space curves and curves in n-dimensional Euclidean space.

In mathematics, a singularity is a point at which a given mathematical object is not defined, or a point where the mathematical object ceases to be well-behaved in some particular way, such as by lacking differentiability or analyticity.

In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry.

<span class="mw-page-title-main">Tangent bundle</span> Tangent spaces of a manifold

In differential geometry, the tangent bundle of a differentiable manifold is a manifold which assembles all the tangent vectors in . As a set, it is given by the disjoint union of the tangent spaces of . That is,

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

In mathematics, specifically in differential topology, Morse theory enables one to analyze the topology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differentiable function on a manifold will reflect the topology quite directly. Morse theory allows one to find CW structures and handle decompositions on manifolds and to obtain substantial information about their homology.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

<span class="mw-page-title-main">Envelope (mathematics)</span> Family of curves in geometry

In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.

In mathematics, the Teichmüller space of a (real) topological surface , is a space that parametrizes complex structures on up to the action of homeomorphisms that are isotopic to the identity homeomorphism. Teichmüller spaces are named after Oswald Teichmüller.

In mathematical analysis, more precisely in microlocal analysis, the wave front (set) WF(f) characterizes the singularities of a generalized function f, not only in space, but also with respect to its Fourier transform at each point. The term "wave front" was coined by Lars Hörmander around 1970.

<span class="mw-page-title-main">Critical point (mathematics)</span> Point where the derivative of a function is zero

Critical point is a wide term used in many branches of mathematics.

<span class="mw-page-title-main">Crunode</span> Point where a curve intersects itself at an angle

In mathematics, a crunode (archaic) or node is a point where a curve intersects itself so that both branches of the curve have distinct tangent lines at the point of intersection. A crunode is also known as an ordinary double point.

<span class="mw-page-title-main">Dual curve</span> Curve in the dual projective plane made from all lines tangent to a given curve

In projective geometry, a dual curve of a given plane curve C is a curve in the dual projective plane consisting of the set of lines tangent to C. There is a map from a curve to its dual, sending each point to the point dual to its tangent line. If C is algebraic then so is its dual and the degree of the dual is known as the class of the original curve. The equation of the dual of C, given in line coordinates, is known as the tangential equation of C. Duality is an involution: the dual of the dual of C is the original curve C.

In geometry, a singular point on a curve is one where the curve is not given by a smooth embedding of a parameter. The precise definition of a singular point depends on the type of curve being studied.

<span class="mw-page-title-main">Tacnode</span> Point on a curve at which two or more osculating circles are tangent

In classical algebraic geometry, a tacnode is a kind of singular point of a curve. It is defined as a point where two osculating circles to the curve at that point are tangent. This means that two branches of the curve have ordinary tangency at the double point.

In mathematics, and particularly singularity theory, the Milnor number, named after John Milnor, is an invariant of a function germ.

In mathematics, and especially affine differential geometry, the affine focal set of a smooth submanifold M embedded in a smooth manifold N is the caustic generated by the affine normal lines. It can be realised as the bifurcation set of a certain family of functions. The bifurcation set is the set of parameter values of the family which yield functions with degenerate singularities. This is not the same as the bifurcation diagram in dynamical systems.

References