Cyclobutanone

Last updated
Cyclobutanone
Cyclobutanone-2D-skeletal.svg
Names
Preferred IUPAC name
Cyclobutanone
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.405 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C4H6O/c5-4-2-1-3-4/h1-3H2
    Key: SHQSVMDWKBRBGB-UHFFFAOYSA-N
  • O=C1CCC1
Properties
C4H6O
Molar mass 70.091 g·mol−1
AppearanceColorless liquid
Density 0.9547 g/cm3 (0 °C) [1]
Melting point −50.9 °C (−59.6 °F; 222.2 K) [1]
Boiling point 99.75 °C (211.55 °F; 372.90 K) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Cyclobutanone is an organic compound with molecular formula (CH2)3CO. It is a four-membered cyclic ketone (cycloalkanone). It is a colorless volatile liquid at room temperature. Since cyclopropanone is highly sensitive, cyclobutanone is the smallest easily handled cyclic ketone.

Contents

Preparation

The Russian chemist Nikolai Kischner first prepared cyclobutanone in a low yield from cyclobutanecarboxylic acid. [2] [3] He synthesized cyclobutanone

Synthesis of cyclobutanone from cyclobutanecarboxylic acid Cyclobutanone Formation1 V.1.svg
Synthesis of cyclobutanone from cyclobutanecarboxylic acid

Involving several steps, Kischner's process is cumbersome and inefficient by today's standards. More efficient, high-yielding syntheses have since been developed. [4] One strategy involves degradation of five-carbon building blocks. For example, the oxidative decarboxylation of cyclobutanecarboxylic acid was improved by the use of other reagents and methods. A newer, more efficient preparation of cyclobutanone was found by P. Lipp and R. Köster in which a solution of diazomethane in diethyl ether is reacted with ketene. [5] This reaction is based on a ring expansion of the cyclopropanone intermediate initially formed, wherein molecular nitrogen is split off. The reaction mechanism was confirmed by a reaction using 14C-labeled diazomethane. [6]

Preparation of cyclobutanone from diazomethane and ketene via cyclopropanone Cyclobutane Synthesis V.1.svg
Preparation of cyclobutanone from diazomethane and ketene via cyclopropanone

Another synthesis of cyclobutanone involves lithium-catalyzed rearrangement of oxaspiropentane, which is formed by epoxidation of the easily accessible methylenecyclopropane. [7] [8]

Preparation of cyclobutanone by rearrangement Cyclobutanon Synthesis A V.1.svg
Preparation of cyclobutanone by rearrangement

Cyclobutanone can also be prepared in a two step procedure by dialkylation of 1,3-dithiane with 1-bromo-3-chloropropane followed by deprotection to the ketone with mercuric chloride (HgCl2) and cadmium carbonate (CdCO3). [9]

Reactions

At about 350 °C, cyclobutanone decomposes into ethylene and ketene. [10] The activation energy for this [2+2] cycloelimination is 52 kcal/mol. The reverse reaction, the [2+2] cycloaddition of ketene and ethylene, has never been observed.

Decomposition of cyclobutanone Cyclobutanone Decomposition V.2.svg
Decomposition of cyclobutanone

See also

Other cyclic ketones:

Related Research Articles

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is a functional group with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Pinner reaction</span> Reaction of cyanide and alcohol to give imino ester salt

The Pinner reaction refers to the acid catalysed reaction of a nitrile with an alcohol to form an imino ester salt ; this is sometimes referred to as a Pinner salt. The reaction is named after Adolf Pinner, who first described it in 1877. Pinner salts are themselves reactive and undergo additional nucleophilic additions to give various useful products:

The Friedel–Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877 to attach substituents to an aromatic ring. Friedel–Crafts reactions are of two main types: alkylation reactions and acylation reactions. Both proceed by electrophilic aromatic substitution.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

<span class="mw-page-title-main">Diazomethane</span> Simplest diazo compound and methylating agent

Diazomethane is the chemical compound CH2N2, discovered by German chemist Hans von Pechmann in 1894. It is the simplest diazo compound. In the pure form at room temperature, it is an extremely sensitive explosive yellow gas; thus, it is almost universally used as a solution in diethyl ether. The compound is a popular methylating agent in the laboratory, but it is too hazardous to be employed on an industrial scale without special precautions. Use of diazomethane has been significantly reduced by the introduction of the safer and equivalent reagent trimethylsilyldiazomethane.

The Vilsmeier–Haack reaction is the chemical reaction of a substituted formamide (1) with phosphorus oxychloride and an electron-rich arene (3) to produce an aryl aldehyde or ketone (5). The reaction is named after Anton Vilsmeier and Albrecht Haack.

In organic chemistry, the Arndt–Eistert reaction is the conversion of a carboxylic acid to its homologue. Named for the German chemists Fritz Arndt (1885–1969) and Bernd Eistert (1902–1978), the method entails treating an acid chlorides with diazomethane. It is a popular method of producing β-amino acids from α-amino acids.

<span class="mw-page-title-main">1,4-Benzoquinone</span> Chemical compound

1,4-Benzoquinone, commonly known as para-quinone, is a chemical compound with the formula C6H4O2. In a pure state, it forms bright-yellow crystals with a characteristic irritating odor, resembling that of chlorine, bleach, and hot plastic or formaldehyde. This six-membered ring compound is the oxidized derivative of 1,4-hydroquinone. The molecule is multifunctional: it exhibits properties of a ketone, being able to form oximes; an oxidant, forming the dihydroxy derivative; and an alkene, undergoing addition reactions, especially those typical for α,β-unsaturated ketones. 1,4-Benzoquinone is sensitive toward both strong mineral acids and alkali, which cause condensation and decomposition of the compound.

<span class="mw-page-title-main">Favorskii rearrangement</span>

The Favorskii rearrangement is principally a rearrangement of cyclopropanones and α-halo ketones that leads to carboxylic acid derivatives. In the case of cyclic α-halo ketones, the Favorskii rearrangement constitutes a ring contraction. This rearrangement takes place in the presence of a base, sometimes hydroxide, to yield a carboxylic acid but most of the time either an alkoxide base or an amine to yield an ester or an amide, respectively. α,α'-Dihaloketones eliminate HX under the reaction conditions to give α,β-unsaturated carbonyl compounds.

<span class="mw-page-title-main">Alpha-Haloketone</span>

In organic chemistry, an α-haloketone is a functional group consisting of a ketone group or more generally a carbonyl group with an α-halogen substituent. α-haloketones are alkylating agents. Prominent α-haloketones include phenacyl bromide and chloroacetone.

<span class="mw-page-title-main">Propiophenone</span> Chemical compound

Propiophenone is an aryl ketone. It is a colorless, sweet-smelling liquid that is insoluble in water, but miscible with organic solvents. It is used in the preparation of other compounds.

<span class="mw-page-title-main">Cyclopropanation</span> Chemical process which generates cyclopropane rings

In organic chemistry, cyclopropanation refers to any chemical process which generates cyclopropane rings. It is an important process in modern chemistry as many useful compounds bear this motif; for example pyrethroids and a number of quinolone antibiotics. However, the high ring strain present in cyclopropanes makes them challenging to produce and generally requires the use of highly reactive species, such as carbenes, ylids and carbanions. Many of the reactions proceed in a cheletropic manner.

Diisopropylamine is a secondary amine with the chemical formula (Me2CH)2NH (Me = methyl). Diisopropylamine is a colorless liquid with an ammonia-like odor. Its lithium derivative, lithium diisopropylamide, known as LDA is a widely used reagent.

<span class="mw-page-title-main">Cyclopropanone</span> Chemical compound

Cyclopropanone is an organic compound with molecular formula (CH2)2CO consisting of a cyclopropane carbon framework with a ketone functional group. The parent compound is labile, being highly sensitive toward even weak nucleophiles. Surrogates of cyclopropanone include the ketals.

The Schotten–Baumann reaction is a method to synthesize amides from amines and acid chlorides:

The Glaser coupling is a type of coupling reaction. It is by far the oldest acetylenic coupling and is based on cuprous salts like copper(I) chloride or copper(I) bromide and an additional oxidant like oxygen. The base in its original scope is ammonia. The solvent is water or an alcohol. The reaction was first reported by Carl Andreas Glaser in 1869. He suggested the following process for his way to diphenylbutadiyne:

The Hoesch reaction or Houben–Hoesch reaction is an organic reaction in which a nitrile reacts with an arene compound to form an aryl ketone. The reaction is a type of Friedel-Crafts acylation with hydrogen chloride and a Lewis acid catalyst.

<span class="mw-page-title-main">Methylenecyclopropane</span> Organic compound, (CH₂)₂C=CH₂

Methylenecyclopropane is an organic compound with the formula (CH2)2C=CH2. It is a hydrocarbon which, as the name suggests, is derived from the addition of a methylene substituent to a cyclopropane ring. It is a colourless, easily condensed gas that is used as a reagent in organic synthesis.

The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. It was first described by Eduard Buchner and Theodor Curtius in 1885 and later by Fritz Schlotterbeck in 1907. Two German chemists also preceded Schlotterbeck in discovery of the reaction, Hans von Pechmann in 1895 and Viktor Meyer in 1905. The reaction has since been extended to the synthesis of β-keto esters from the condensation between aldehydes and diazo esters. The general reaction scheme is as follows:

<span class="mw-page-title-main">Methallyl chloride</span> Chemical compound

Methallyl chloride is the organic compound with the formula CH2=C(CH3)CH2Cl. It is a colorless liquid and a lacrymator. Its properties are similar to those of allyl chloride. It is a strong alkylating agent used to install isobutenyl groups.

References

  1. 1 2 3 CRC Handbook of Chemistry and Physics. Vol. 90. Boca Raton, Florida: CRC Press.
  2. N. Kishner (1905). "'Über die Einwirkung von Brom auf die Amide α-bromsubstituierter Säuren". Journal der Russischen Physikalisch-Chemischen Gesellschaft. 37: 103–105.
  3. N. Kishner (1905). "Über das Cyklobutanon". Journal der Russischen Physikalisch-Chemischen Gesellschaft. 37: 106–109.
  4. Dieter Seebach (1971). "Isocyclische Vierringverbindungen". In Houben; Weyl; Müller (eds.). Methoden der Organischen Chemie. Vol. IV/4. Stuttgart: Georg Thieme Verlag.
  5. P. Lipp und R. Köster (1931). "Ein neuer Weg zum Cyclobutanon". Berichte der Deutschen Chemischen Gesellschaft. 64 (11): 2823–2825. doi:10.1002/cber.19310641112.
  6. Semenow, Dorothy A.; Cox, Eugene F.; Roberts, John D. (1956). "Small-Ring Compounds. XIV. Radioactive Cyclobutanone from Ketene and Diazomethane-14C1". Journal of the American Chemical Society. 78 (13): 3221–3223. doi:10.1021/ja01594a069.
  7. Salaün, J. R.; Conia, J. M. (1971). "Oxaspiropentane. A rapid route to cyclobutanone". Journal of the Chemical Society D: Chemical Communications (23): 1579b–1580. doi:10.1039/C2971001579B.
  8. J. R. Salaün, J. Champion, J. M. Conia (1977). "Cyclobutanone from Methylenecyclopropane via Oxaspiropentane". Organic Syntheses . 57: 36. doi:10.15227/orgsyn.057.0036.{{cite journal}}: CS1 maint: multiple names: authors list (link); Collective Volume, vol. 6, p. 320
  9. D. Seebach, A. K. Beck (1971). "Cyclic Ketones from 1,3-Dithiane: Cyclobutanone". Organic Syntheses . 51: 76. doi:10.15227/orgsyn.051.0076.; Collective Volume, vol. 6, p. 316
  10. Das, M. N.; Kern, F.; Coyle, T. D.; Walters, W. D. (1954). "The Thermal Decomposition of Cyclobutanone1". Journal of the American Chemical Society. 76 (24): 6271–6274. doi:10.1021/ja01653a013.