DARPin

Last updated

DARPins (an acronym for designed ankyrin repeat proteins) are genetically engineered antibody mimetic proteins typically exhibiting highly specific and high-affinity target protein binding. They are derived from natural ankyrin repeat proteins, one of the most common classes of binding proteins in nature, which are responsible for diverse functions such as cell signaling, regulation and structural integrity of the cell. DARPins consist of at least three, repeat motifs or modules, of which the most N- and the most C-terminal modules are referred to as "caps", since they shield the hydrophobic core of the protein. The number of internal modules is indicated as number (e.g. N1C, N2C, N3C, ...) while the caps are indicated with "N" or "C", respectively. The molecular mass of e.g. 14 or 18 kDa (kilodaltons) for four- (N2C) or five- (N3C) repeat DARPins is rather small for a biologic (ca 10% of the size of an IgG).

Contents

DARPins constitute a new class of potent, specific and versatile small-protein therapeutics, and are used as investigational tools in various research, diagnostic and therapeutic applications. [1] Molecular Partners AG, a clinical-stage biopharmaceutical company with several DARPin molecules in clinical and preclinical development, is currently pursuing the own development of therapeutic DARPins (forward integration). Athebio AG builds on further improving the DARPin scaffold for a partnering model approach. [2]

In addition, DARPins can be used as crystallization chaperones for soluble and membrane proteins, including G protein-coupled receptors (GPCRs), either as binding partners or as rigid fusions to the target protein, a concept now being extended to structure determination by cryoEM. [3] [4] [5] [6]

Origin, structure and generation

A DARPin with five ankyrin repeat motifs (PDB: 2QYJ ) PDB 2qyj EBI.png
A DARPin with five ankyrin repeat motifs ( PDB: 2QYJ )

The DARPin platform was discovered and developed in the laboratory of Andreas Plückthun at the University of Zurich, Switzerland while studying engineering and libraries of recombinant antibodies. [7] DARPins are derived from naturally occurring ankyrin proteins, a protein class that mediates high-affinity protein-protein interactions in nature.

DARPin libraries were designed via sequence alignments of several thousand natural ankyrin repeat motifs (of about 33 amino acids each) combined with structure-based design and recombinant DNA methods. [7] These proteins consist of repetitive structural units that form a stable protein domain with a large potential target interaction surface. Typically, DARPins comprise four or five repeats, of which the first (N-capping repeat) and last (C-capping repeat) serve to shield the hydrophobic protein core from the aqueous environment. DARPins correspond to the average size of natural ankyrin repeat protein domains. Proteins with fewer than three repeats (i.e., the capping repeats and one internal repeat) do not form a stable enough tertiary structure. [8] The molecular mass of a DARPin depends on the total number of repeats, as shown in the following chart:

Repeats34567...
Approximate mass (kDa)1014182226...

Libraries of DARPins with randomized potential target interaction residues, with diversities of over 1012 variants, have been generated at the DNA level. From these libraries, biochemists can select DARPins to bind the target of choice with picomolar affinity and specificity can be selected using ribosome display [9] or phage display [10] using signal sequences allowing cotranslational secretion. [11] DARPins can be designed to act as receptor agonists, antagonists, inverse agonists, enzyme inhibitors, or simple target protein binders. [1]

Properties and potential benefits of DARPins

DARPins are expressed in the cytoplasm of Escherichia coli at high levels (over 10 g/L in fermentation, 1 g/L in shake flask) in soluble form. [12] The proteins exhibit high thermal and thermodynamic stability (denaturation midpoint: usually equilibrium unfolding: ∆G > 9.5  kcal/mol) increasing with increasing repeat number. [7] [13] [14] DARPins are stable in human blood serum and can be engineered so as not to contain T-cell epitopes.

Due to the high specificity, stability, potency and affinity, as well as their flexible architecture, DARPins have a rigid body-binding mode. [1] [9] Multi-specific or multivalent constructs made by genetic fusion suggest that fused DARPins have similar binding properties as single-domain DARPins. [1] The absence of cysteines in the scaffold enables engineering of site-specific cysteines, allowing site-directed coupling of chemicals to the molecule. Non-natural amino acids can be introduced for the same purpose. [15]

Potentially, DARPins can provide clinical benefit by overcoming the limitations of conventional therapeutic approaches, which typically target a single disease pathway and thus may compromise efficacy. In many cases, the complexity of a disease results from the dysregulation of multiple pathways. DARPin technology can be leveraged to rapidly generate thousands of different "multi-DARPins" where the binding domains are connected (i.e., by linkers), thereby enabling the targeting of several disease pathways. DARPins and multi-DARPins can also be fused to non-DARPin elements, such as a toxin, [16] to generate targeted therapeutics, and their manufacture is facilitated by the resistance of DARPins against aggregation. The diversity of formats and robustness of multi-DARPins facilitates an empirical approach (such as through outcome-based screening) to efficiently identify DARPins with potential activity in specific disease pathways.

The potential benefits of DARPins are largely due to their structural and biophysical characteristics. Their small size (14-18 kDa) is thought to enable increased tissue penetration, and their high potency (<5-100 pM) makes DARPins active at low concentrations. [17] DARPins are soluble at >100 g/L, and their high stability and solubility are considered desirable properties for drug compounds. DARPins can be produced rapidly and cost-efficiently (i.e., from E. coli). Their pharmacokinetic (PK) properties can be adjusted by fusion to half-life extending molecules, such as polyethylene glycol (PEG), or to DARPins binding to human serum albumin. Because of their favorable biophysical properties, [1] DARPins are considered highly developable using standard processes, potentially exhibiting robust class behavior.

Clinical development and applications

DARPins have been used as research tools, [1] as diagnostic agents [17] and as therapeutic agents. [18] [19] [20] [21] MP0112, the first DARPin candidate in the clinic, is a vascular endothelial growth factor (VEGF) inhibitor and entered clinical trials for the treatment of wet age-related macular degeneration (wet AMD, also known as neovascular age-related macular degeneration) [16] and diabetic macular edema [22] in early 2010.

Currently, MP0112 is being investigated in three different clinical trials. The first two trials are safety and efficacy studies of abicipar in patients with wet AMD to establish comparability between Japanese and non-Japanese patients. [18] [20] The third study is to test the safety and efficacy of abicipar in patients with DME. [19]

In July 2014, Molecular Partners initiated a first-in-human study to investigate the safety, tolerability and blood levels of MP0250, a second DARPin candidate, in patients with cancer. [21]

Molecular Partners AG has several additional DARPins in preclinical development with potential indications in various disease areas, including ophthalmology, oncology, immuno-oncology and immunology.

Related Research Articles

<span class="mw-page-title-main">Macular degeneration</span> Medical condition associated with vision loss

Macular degeneration, also known as age-related macular degeneration, is a medical condition which may result in blurred or no vision in the center of the visual field. Early on there are often no symptoms. Over time, however, some people experience a gradual worsening of vision that may affect one or both eyes. While it does not result in complete blindness, loss of central vision can make it hard to recognize faces, drive, read, or perform other activities of daily life. Visual hallucinations may also occur.

Ribosome display is a technique used to perform in vitro protein evolution to create proteins that can bind to a desired ligand. The process results in translated proteins that are associated with their mRNA progenitor which is used, as a complex, to bind to an immobilized ligand in a selection step. The mRNA-protein hybrids that bind well are then reverse transcribed to cDNA and their sequence amplified via PCR. The result is a nucleotide sequence that can be used to create tightly binding proteins.

An angiogenesis inhibitor is a substance that inhibits the growth of new blood vessels (angiogenesis). Some angiogenesis inhibitors are endogenous and a normal part of the body's control and others are obtained exogenously through pharmaceutical drugs or diet.

The melanocortins are a family of neuropeptide hormones which are the ligands of the melanocortin receptors The melanocortin system consists of melanocortin receptors, ligands, and accessory proteins. The genes of the melanocortin system are found in chordates. Melanocortins were originally named so because their earliest known function was in melanogenesis. It is now known that the melanocortin system regulates diverse functions throughout the body, including inflammatory response, fibrosis, melanogenesis, steroidogenesis, energy homeostasis, sexual function, and exocrine gland function.

<span class="mw-page-title-main">Ankyrin</span> Protein family

Ankyrins are a family of proteins that mediate the attachment of integral membrane proteins to the spectrin-actin based membrane cytoskeleton. Ankyrins have binding sites for the beta subunit of spectrin and at least 12 families of integral membrane proteins. This linkage is required to maintain the integrity of the plasma membranes and to anchor specific ion channels, ion exchangers and ion transporters in the plasma membrane. The name is derived from the Greek word ἄγκυρα (ankyra) for "anchor".

<span class="mw-page-title-main">Ankyrin repeat</span>

The ankyrin repeat is a 33-residue motif in proteins consisting of two alpha helices separated by loops, first discovered in signaling proteins in yeast Cdc10 and Drosophila Notch. Domains consisting of ankyrin tandem repeats mediate protein–protein interactions and are among the most common structural motifs in known proteins. They appear in bacterial, archaeal, and eukaryotic proteins, but are far more common in eukaryotes. Ankyrin repeat proteins, though absent in most viruses, are common among poxviruses. Most proteins that contain the motif have four to six repeats, although its namesake ankyrin contains 24, and the largest known number of repeats is 34, predicted in a protein expressed by Giardia lamblia.

<span class="mw-page-title-main">KRAS</span> Protein-coding gene in humans

KRAS is a gene that provides instructions for making a protein called K-Ras, a part of the RAS/MAPK pathway. The protein relays signals from outside the cell to the cell's nucleus. These signals instruct the cell to grow and divide (proliferate) or to mature and take on specialized functions (differentiate). It is called KRAS because it was first identified as a viral oncogene in the KirstenRAt Sarcoma virus. The oncogene identified was derived from a cellular genome, so KRAS, when found in a cellular genome, is called a proto-oncogene.

<span class="mw-page-title-main">PEGylation</span> Chemical reaction

PEGylation is the process of both covalent and non-covalent attachment or amalgamation of polyethylene glycol polymer chains to molecules and macrostructures, such as a drug, therapeutic protein or vesicle, which is then described as PEGylated. PEGylation affects the resulting derivatives or aggregates interactions, which typically slows down their coalescence and degradation as well as elimination in vivo.

<span class="mw-page-title-main">Ankyrin-2</span> Protein-coding gene in the species Homo sapiens

Ankyrin-2, also known as Ankyrin-B, and Brain ankyrin, is a protein which in humans is encoded by the ANK2 gene. Ankyrin-2 is ubiquitously expressed, but shows high expression in cardiac muscle. Ankyrin-2 plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in cardiomyocytes, as well as in costamere structures. Mutations in ANK2 cause a dominantly-inherited, cardiac arrhythmia syndrome known as long QT syndrome 4 as well as sick sinus syndrome; mutations have also been associated to a lesser degree with hypertrophic cardiomyopathy. Alterations in ankyrin-2 expression levels are observed in human heart failure.

Antibody mimetics are organic compounds that, like antibodies, can specifically bind antigens, but that are not structurally related to antibodies. They are usually artificial peptides or proteins with a molar mass of about 3 to 20 kDa.

<span class="mw-page-title-main">Hsp90 inhibitor</span> Drug class

An Hsp90 inhibitor is a substance that inhibits that activity of the Hsp90 heat shock protein. Since Hsp90 stabilizes a variety of proteins required for survival of cancer cells, these substances may have therapeutic benefit in the treatment of various types of malignancies. Furthermore, a number of Hsp90 inhibitors are currently undergoing clinical trials for a variety of cancers. Hsp90 inhibitors include the natural products geldanamycin and radicicol as well as semisynthetic derivatives 17-N-Allylamino-17-demethoxygeldanamycin (17AAG).

Nesvacumab is an experimental monoclonal antibody originally designed for the treatment of cancer. It targets the protein angiopoietin 2. As of May 2017, it is in Phase II clinical trials for the treatment of diabetic macular edema.

mTOR inhibitors Class of pharmaceutical drugs

mTOR inhibitors are a class of drugs that inhibit the mammalian target of rapamycin (mTOR), which is a serine/threonine-specific protein kinase that belongs to the family of phosphatidylinositol-3 kinase (PI3K) related kinases (PIKKs). mTOR regulates cellular metabolism, growth, and proliferation by forming and signaling through two protein complexes, mTORC1 and mTORC2. The most established mTOR inhibitors are so-called rapalogs, which have shown tumor responses in clinical trials against various tumor types.

Aganirsen is a 25 mer DNA antisense oligonucleotide therapeutic inhibiting insulin receptor substrate-1 (IRS-1), which is being investigated as a topical treatment for ocular neovascularization. Aganirsen is a candidate for the treatment of ocular neovascularization in patients with front of the eye (cornea) or back of the eye (retinal) diseases, including progressive corneal neovascularization in patients with infectious keratitis and wet age related macular degeneration (AMD).

<span class="mw-page-title-main">Targeted covalent inhibitors</span>

Targeted covalent inhibitors (TCIs) or Targeted covalent drugs are rationally designed inhibitors that bind and then bond to their target proteins. These inhibitors possess a bond-forming functional group of low chemical reactivity that, following binding to the target protein, is positioned to react rapidly with a proximate nucleophilic residue at the target site to form a bond.

Molecular Partners AG is a clinical-stage biopharmaceutical company based in Zürich, Switzerland. The company is developing a new class of potent, specific and versatile small-protein therapies called DARPins, with potential clinical applications in a range of disease areas including oncology, immuno-oncology, ophthalmology, and infectious diseases. Molecular Partners currently has two DARPin molecules in clinical development, and a broad pipeline of molecules in preclinical development.

<span class="mw-page-title-main">Andreas Plückthun</span> German biochemist (born 1956)

Andreas Plückthun is a scientist whose research is focused on the field of protein engineering. Andreas Plückthun is the director of the department of biochemistry at the University of Zurich. Plückthun was appointed to the faculty of the University of Zurich as a Full professor of biochemistry in 1993. Plückthun was group leader at the Max Planck Institute of Biochemistry, Germany (1985-1993). He was elected to the European Molecular Biology Organization (EMBO) in 1992, and named a member of the German National Academy of Science (Leopoldina) in 2003. He is cofounder of the biotechnology companies Morphosys Molecular Partners AG and G7 Therapeutics..

Brolucizumab sold under trade name Beovu among others, is a humanized single-chain antibody fragment for the treatment of neovascular (wet) age-related macular degeneration (AMD).

<span class="mw-page-title-main">Faricimab</span> Medication for macular degeneration

Faricimab, sold under the brand name Vabysmo, is a monoclonal antibody used for the treatment of neovascular age-related macular degeneration (nAMD) and diabetic macular edema (DME). Faricimab is the first bispecific monoclonal antibody to target both vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang-2). By targeting these pathways, faricimab stabilizes blood vessels in the retina. It is given by intravitreal injection by an ophthalmologist.

Conbercept, sold under the commercial name Lumitin, is a novel vascular endothelial growth factor (VEGF) inhibitor used to treat neovascular age-related macular degeneration (AMD) and diabetic macular edema (DME). The anti-VEGF was approved for the treatment of neovascular AMD by the China State FDA (CFDA) in December 2013. As of December 2020, conbercept is undergoing phase III clinical trials through the U.S. Food and Drug Administration’s PANDA-1 and PANDA-2 development programs.

References

  1. 1 2 3 4 5 6 Plückthun A (2015). "Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy". Annu. Rev. Pharmacol. Toxicol. 55 (1): 489–511. doi: 10.1146/annurev-pharmtox-010611-134654 . PMID   25562645.
  2. www.athebio.com
  3. Mittl PR, Ernst P, Plückthun A (February 2020). "Chaperone-assisted structure elucidation with DARPins". Current Opinion in Structural Biology. 60: 93–100. doi:10.1016/j.sbi.2019.12.009. PMID   31918361. S2CID   210133068.
  4. Deluigi M, Klipp A, Klenk C, Merklinger L, Eberle SA, Morstein L, Heine P, Mittl PR, Ernst P, Kamenecka TM, He Y, Vacca S, Egloff P, Honegger A, Plückthun A (January 2021). "Complexes of the neurotensin receptor 1 with small-molecule ligands reveal structural determinants of full, partial, and inverse agonism". Science Advances. 7 (5): eabe5504. Bibcode:2021SciA....7.5504D. doi:10.1126/sciadv.abe5504. PMC   7840143 . PMID   33571132.
  5. Deluigi M, Morstein L, Schuster M, Klenk C, Merklinger L, Cridge RR, de Zhang LA, Klipp A, Vacca S, Vaid TM, Mittl PR, Egloff P, Eberle SA, Zerbe O, Chalmers DK, Scott DJ, Plückthun A (January 2022). "Crystal structure of the α1B-adrenergic receptor reveals molecular determinants of selective ligand recognition". Nature Communications. 13 (1): 382. Bibcode:2022NatCo..13..382D. doi: 10.1038/s41467-021-27911-3 . PMC   8770593 . PMID   35046410.
  6. Castells-Graells, Roger; Meador, Kyle; Arbing, Mark A.; Sawaya, Michael R.; Gee, Morgan; Cascio, Duilio; Gleave, Emma; Debreczeni, Judit É.; Breed, Jason; Leopold, Karoline; Patel, Ankoor; Jahagirdar, Dushyant; Lyons, Bronwyn; Subramaniam, Sriram; Yeates, Todd (2023-09-12). "Cryo-EM structure determination of small therapeutic protein targets at 3 Å-resolution using a rigid imaging scaffold". Proceedings of the National Academy of Sciences. 120 (37): e2305494120. doi:10.1073/pnas.2305494120. ISSN   0027-8424. PMC   10500258 . PMID   37669364.
  7. 1 2 3 Binz HK, Stumpp MT, Forrer P, Amstutz P, Plückthun A (September 2003). "Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins". Journal of Molecular Biology. 332 (2): 489–503. CiteSeerX   10.1.1.627.317 . doi:10.1016/S0022-2836(03)00896-9. PMID   12948497.
  8. Mosavi, L. K.; Minor, D. L.; Peng, Z. -Y. (2002). "Consensus-derived structural determinants of the ankyrin repeat motif". Proceedings of the National Academy of Sciences. 99 (25): 16029–16034. Bibcode:2002PNAS...9916029M. doi: 10.1073/pnas.252537899 . PMC   138559 . PMID   12461176.
  9. 1 2 Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, Forrer P, Grütter MG, Plückthun A (May 2004). "High-affinity binders selected from designed ankyrin repeat protein libraries". Nature Biotechnology. 22 (5): 575–582. doi:10.1038/nbt962. PMID   15097997. S2CID   1191035.
  10. Steiner D, Forrer P, Plückthun A (2008). "Efficient Selection of DARPins with Sub-nanomolar Affinities using SRP Phage Display" (PDF). Mol. Biol. 382 (5): 1211–1227. doi:10.1016/j.jmb.2008.07.085. PMID   18706916.
  11. Steiner D, Forrer P, Stumpp MT, Plückthun A (May 2006). "Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display". Nature Biotechnology. 24 (7): 823–831. doi:10.1038/nbt1218. PMID   16823375. S2CID   869587.
  12. Data on file. Molecular Partners AG.
  13. Kohl A, Binz HK, Forrer P, Stumpp MT, Plückthun A, Grütter MG (May 2003). "Designed to be stable: Crystal structure of a consensus ankyrin repeat protein". Proc. Natl. Acad. Sci. USA. 100 (4): 1700–1775. Bibcode:2003PNAS..100.1700K. doi: 10.1073/pnas.0337680100 . PMC   149896 . PMID   12566564.
  14. Wetzel SK, Settanni G, Kenig M, Binz HK, Plückthun A (February 2008). "Folding and unfolding mechanism of highly stable full-consensus ankyrin repeat proteins" (PDF). Journal of Molecular Biology. 376 (1): 241–257. doi:10.1016/j.jmb.2007.11.046. PMID   18164721.
  15. Simon M, Frey R, Zangemeister-Wittke U, Plückthun A (2013). "rthogonal assembly of a designed ankyrin repeat protein-cytotoxin conjugate with a clickable serum albumin module for half-life extension". Bioconjugate Chem. 24 (2): 1955–1966. doi:10.1021/bc200591x. PMID   22188139.
  16. 1 2 Martin-Killias P, Stefan N, Rothschild S, Plückthun A, Zangemeister-Wittke U (2011). "A novel fusion toxin derived from an EpCAM-specific designed ankyrin repeat protein has potent antitumor activity". Clin. Cancer Res. 17 (1): 100–110. doi: 10.1158/1078-0432.CCR-10-1303 . PMID   21075824.
  17. 1 2 Zahnd C, Kawe M, Stumpp MT, de Pasquale C, Tamaskovic R, Nagy-Davidescu G, Dreier B, Schibli R, Binz HK, Waibel R, Plückthun A (2010). "Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: effects of affinity and molecular size". Cancer Res. 70 (4): 1595–1605. doi: 10.1158/0008-5472.CAN-09-2724 . PMID   20124480.
  18. 1 2 Clinical trial number NCT02181517 for "A Study of Abicipar Pegol in Patients With Neovascular Age-related Macular Degeneration" at Clinicaltrials.gov.
  19. 1 2 Clinical trial number NCT02186119 for "A Study of Abicipar Pegol in Patients With Diabetic Macular Edema" at Clinicaltrials.gov.
  20. 1 2 Clinical trial number NCT02181504 for "A Study of Abicipar Pegol in Japanese Patients With Neovascular Age-related Macular Degeneration" at Clinicaltrials.gov.
  21. 1 2 Clinical trial number NCT02194426 for First-in-human Study to Investigate the Safety, Tolerability and Blood Levels of the Test Drug MP0250 in Cancer Patients" at Clinicaltrials.gov.
  22. Clinical trial number NCT01042678 for "Study of MP0112 Intravitreal Injection in Patients With Diabetic Macula Edema" at ClinicalTrials.gov