Davemaoite

Last updated
Davemaoite
Structure of Davemaoite.png
Steel blue atom is Ca, red atoms are O and black atoms are Si
General
Category Silicate
Formula
(repeating unit)
CaSiO3
IMA symbol Dvm [1]
Strunz classification 9.H0
Crystal system Isometric
Crystal class Cubic
Space group Pm3m
Unit cell a= 3.591 Å
Structure
Identification
Common impuritiesK, Na, Al, Cr

Davemaoite is a high-pressure calcium silicate perovskite (CaSiO3) mineral with a distinctive cubic crystal structure. It is named after geophysicist Ho-kwang (Dave) Mao, who pioneered in many discoveries in high-pressure geochemistry and geophysics. [2] [3]

It is one of three main minerals in Earth's lower mantle, making up around 5–7% of the material there. Significantly, davemaoite can host uranium and thorium, radioactive isotopes which produce heat through radioactive decay and contribute greatly to heating within this region [2] giving the material a major role in how heat flows deep below the Earth's surface. [2]

Davemaoite has been artificially synthesized in the laboratory, but was thought to be too extreme to exist in the Earth's crust. Then in 2021, the mineral was discovered as specks within a diamond that formed between 660 and 900 km beneath the Earth's surface, within the mantle. The diamond had been extracted from the Orapa diamond mine in Botswana. [2] The discovery was made by focusing a high-energy beam of X-rays on precise spots within the diamond using a technique known as synchrotron X-ray diffraction. [4] [5] [6] Subsequently, a reappraisal of the data from the Orapa diamond and its inclusion cast doubt on the attribution to calcium silicate perovskite. Instead, the data were reinterpreted in terms of a diamond from the shallow part of the mantle with inclusions of minerals commonly found in microinclusions. [7]

Calcium silicate is found in other forms, such as wollastonite in the crust and breyite in the middle and lower regions of the mantle. However, davemaoite can exist only at very high pressure of around 200,000 times that found at Earth's surface.

See also

Related Research Articles

<span class="mw-page-title-main">Mineral</span> Crystalline chemical element or compound formed by geologic processes

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.

<span class="mw-page-title-main">Subduction</span> A geological process at convergent tectonic plate boundaries where one plate moves under the other

Subduction is a geological process in which the oceanic lithosphere and some continental lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, the heavier plate dives beneath the second plate and sinks into the mantle. A region where this process occurs is known as a subduction zone, and its surface expression is known as an arc-trench complex. The process of subduction has created most of the Earth's continental crust. Rates of subduction are typically measured in centimeters per year, with rates of convergence as high as 11 cm/year.

<span class="mw-page-title-main">Planetary differentiation</span> Astrogeological concept

In planetary science, planetary differentiation is the process by which the chemical elements of a planetary body accumulate in different areas of that body, due to their physical or chemical behavior. The process of planetary differentiation is mediated by partial melting with heat from radioactive isotope decay and planetary accretion. Planetary differentiation has occurred on planets, dwarf planets, the asteroid 4 Vesta, and natural satellites.

<span class="mw-page-title-main">Periclase</span> Rocksalt, magnesium oxide mineral

Periclase is a magnesium mineral that occurs naturally in contact metamorphic rocks and is a major component of most basic refractory bricks. It is a cubic form of magnesium oxide (MgO). In nature it usually forms a solid solution with wüstite (FeO) and is then referred to as ferropericlase or magnesiowüstite.

<span class="mw-page-title-main">Planetary core</span> Innermost layer(s) of a planet

A planetary core consists of the innermost layers of a planet. Cores may be entirely solid or entirely liquid, or a mixture of solid and liquid layers as is the case in the Earth. In the Solar System, core sizes range from about 20% to 85% of a planet's radius (Mercury).

<span class="mw-page-title-main">Earth's mantle</span> A layer of silicate rock between Earths crust and its outer core

Earth's mantle is a layer of silicate rock between the crust and the outer core. It has a mass of 4.01×1024 kg (8.84×1024 lb) and thus makes up 67% of the mass of Earth. It has a thickness of 2,900 kilometers (1,800 mi) making up about 46% of Earth's radius and 84% of Earth's volume. It is predominantly solid but, on geologic time scales, it behaves as a viscous fluid, sometimes described as having the consistency of caramel. Partial melting of the mantle at mid-ocean ridges produces oceanic crust, and partial melting of the mantle at subduction zones produces continental crust.

<span class="mw-page-title-main">Internal structure of Earth</span>

The internal structure of Earth is the layers of the Earth, excluding its atmosphere and hydrosphere. The structure consists of an outer silicate solid crust, a highly viscous asthenosphere and solid mantle, a liquid outer core whose flow generates the Earth's magnetic field, and a solid inner core.

<span class="mw-page-title-main">Core–mantle boundary</span> Discontinuity where the bottom of the planets mantle meets the outer layer of the core

The core–mantle boundary (CMB) of Earth lies between the planet's silicate mantle and its liquid iron–nickel outer core, at a depth of 2,891 km (1,796 mi) below Earth's surface. The boundary is observed via the discontinuity in seismic wave velocities at that depth due to the differences between the acoustic impedances of the solid mantle and the molten outer core. P-wave velocities are much slower in the outer core than in the deep mantle while S-waves do not exist at all in the liquid portion of the core. Recent evidence suggests a distinct boundary layer directly above the CMB possibly made of a novel phase of the basic perovskite mineralogy of the deep mantle named post-perovskite. Seismic tomography studies have shown significant irregularities within the boundary zone and appear to be dominated by the African and Pacific Large low-shear-velocity provinces (LLSVP).

Post-perovskite (pPv) is a high-pressure phase of magnesium silicate (MgSiO3). It is composed of the prime oxide constituents of the Earth's rocky mantle (MgO and SiO2), and its pressure and temperature for stability imply that it is likely to occur in portions of the lowermost few hundred km of Earth's mantle.

<span class="mw-page-title-main">Ringwoodite</span> High-pressure phase of magnesium silicate

Ringwoodite is a high-pressure phase of Mg2SiO4 (magnesium silicate) formed at high temperatures and pressures of the Earth's mantle between 525 and 660 km (326 and 410 mi) depth. It may also contain iron and hydrogen. It is polymorphous with the olivine phase forsterite (a magnesium iron silicate).

Pyrolite is a term used to characterize a model composition of the Earth's mantle. This model is based on that a pyrolite source can produce the Mid-Ocean Ridge Basalt by partial melting. It was first proposed by Ted Ringwood (1962) as being 1 part basalt and 4 parts harzburgite, but later was revised to being 1 part tholeiitic basalt and 3 parts dunite. The term is derived from the mineral names PYR-oxene and OL-ivine. However, whether pyrolite is representative of the Earth's mantle remains debated.

Ferropericlase or magnesiowüstite is a magnesium/iron oxide with the chemical formula (Mg,Fe)O that is interpreted to be one of the main constituents of the Earth's lower mantle together with the silicate perovskite, a magnesium/iron silicate with a perovskite structure. Ferropericlase has been found as inclusions in a few natural diamonds. An unusually high iron content in one suite of diamonds has been associated with an origin from the lowermost mantle. Discrete ultralow-velocity zones in the deepest parts of the mantle, near the Earth's core, are thought to be blobs of ferropericlase, as seismic waves are significantly slowed as they pass through them, and ferropericlase is known to have this effect at the high pressures and temperatures found deep within the Earth's mantle. In May 2018, ferropericlase was shown to be anisotropic in specific ways in the high pressures of the lower mantle, and these anisotropies may help seismologists and geologists to confirm whether those ultra-low velocity zones are indeed ferropericlase, by passing seismic waves through them from various different directions and observing the exact amount of change in the velocity of those waves.

Akimotoite is a rare silicate mineral in the ilmenite group of minerals, with the chemical formula (Mg,Fe)SiO3. It is polymorphous with pyroxene and with bridgmanite, a natural silicate perovskite that is the most abundant mineral in Earth's silicate mantle. Akimotoite has a vitreous luster, is colorless, and has a white or colorless streak. It crystallizes in the trigonal crystal system in space group R3. It is the silicon analogue of geikielite (MgTiO3).

Partial melting is the phenomenon that occurs when a rock is subjected to temperatures high enough to cause certain minerals to melt, but not all of them. Partial melting is an important part of the formation of all igneous rocks and some metamorphic rocks, as evidenced by a multitude of geochemical, geophysical and petrological studies.

Silicate perovskite is either (Mg,Fe)SiO3 or CaSiO3 when arranged in a perovskite structure. Silicate perovskites are not stable at Earth's surface, and mainly exist in the lower part of Earth's mantle, between about 670 and 2,700 km depth. They are thought to form the main mineral phases, together with ferropericlase.

The geochemistry of carbon is the study of the transformations involving the element carbon within the systems of the Earth. To a large extent this study is organic geochemistry, but it also includes the very important carbon dioxide. Carbon is transformed by life, and moves between the major phases of the Earth, including the water bodies, atmosphere, and the rocky parts. Carbon is important in the formation of organic mineral deposits, such as coal, petroleum or natural gas. Most carbon is cycled through the atmosphere into living organisms and then respirated back into the atmosphere. However an important part of the carbon cycle involves the trapping of living matter into sediments. The carbon then becomes part of a sedimentary rock when lithification happens. Human technology or natural processes such as weathering, or underground life or water can return the carbon from sedimentary rocks to the atmosphere. From that point it can be transformed in the rock cycle into metamorphic rocks, or melted into igneous rocks. Carbon can return to the surface of the Earth by volcanoes or via uplift in tectonic processes. Carbon is returned to the atmosphere via volcanic gases. Carbon undergoes transformation in the mantle under pressure to diamond and other minerals, and also exists in the Earth's outer core in solution with iron, and may also be present in the inner core.

<span class="mw-page-title-main">Mantle oxidation state</span> Application of oxidation state to the study of the Earths mantle

Mantle oxidation state (redox state) applies the concept of oxidation state in chemistry to the study of the Earth's mantle. The chemical concept of oxidation state mainly refers to the valence state of one element, while mantle oxidation state provides the degree of decreasing of increasing valence states of all polyvalent elements in mantle materials confined in a closed system. The mantle oxidation state is controlled by oxygen fugacity and can be benchmarked by specific groups of redox buffers.

<span class="mw-page-title-main">Lower mantle</span> The region from 660 to 2900 km below Earths surface

The lower mantle, historically also known as the mesosphere, represents approximately 56% of Earth's total volume, and is the region from 660 to 2900 km below Earth's surface; between the transition zone and the outer core. The preliminary reference Earth model (PREM) separates the lower mantle into three sections, the uppermost (660–770 km), mid-lower mantle (770–2700 km), and the D layer (2700–2900 km). Pressure and temperature in the lower mantle range from 24–127 GPa and 1900–2600 K. It has been proposed that the composition of the lower mantle is pyrolitic, containing three major phases of bridgmanite, ferropericlase, and calcium-silicate perovskite. The high pressure in the lower mantle has been shown to induce a spin transition of iron-bearing bridgmanite and ferropericlase, which may affect both mantle plume dynamics and lower mantle chemistry.

The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust and ends at the top of the lower mantle at 670 km (420 mi). Temperatures range from approximately 500 K at the upper boundary with the crust to approximately 1,200 K at the boundary with the lower mantle. Upper mantle material that has come up onto the surface comprises about 55% olivine, 35% pyroxene, and 5 to 10% of calcium oxide and aluminum oxide minerals such as plagioclase, spinel, or garnet, depending upon depth.

<span class="mw-page-title-main">Diamond inclusions</span>

Diamond inclusions are the non-diamond materials that get encapsulated inside diamond during its formation process in the mantle. The trapped materials can be other minerals or fluids like water. Since diamonds have high strength and low reactivity with either the inclusion or the volcanic host rocks which carry the diamond to the Earth's surface, the diamond serves as a container that preserves the included material intact under the changing conditions from the mantle to the surface. Although diamonds can only place a lower bound on the pressure of their formation, many inclusions provide additional constraints on the pressure, temperature and even age of formation.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 4 Alexandra Witze (11 November 2021). "Diamond delivers long-sought mineral from the deep Earth". Nature . doi:10.1038/d41586-021-03409-2. PMID   34764468.
  3. Tschauner, Oliver; Huang, Shichun; Yang, Shuying; Humayun, Munir; Liu, Wenjun; Gilbert Corder, Stephanie N; Bechtel, Hans A.; Tischler, Jon; Rossman, George R. (2021-11-12). "Discovery of davemaoite, CaSiO 3 -perovskite, as a mineral from the lower mantle". Science. 374 (6569): 891–894. Bibcode:2021Sci...374..891T. doi:10.1126/science.abl8568. ISSN   0036-8075. PMID   34762475. S2CID   244039905.
  4. Baker, Harry (2021-11-14). "Diamond hauled from deep inside Earth holds never-before-seen mineral". Space.com. Retrieved 2021-11-15.
  5. Pappas, Stephanie. "New Mineral Discovered in Deep-Earth Diamond". Scientific American. Retrieved 2021-11-15.
  6. Klein, Alice. "New mineral davemaoite discovered inside a diamond from the Earth's mantle". New Scientist. Archived from the original on 2021-11-11. Retrieved 2021-11-15.
  7. Walter, Michael J.; Kohn, Simon C.; Pearson, D. Graham; Shirey, Steven B.; Speich, Laura; Stachel, Thomas; Thomson, Andrew R.; Yang, Jing (2022-05-06). "Comment on "Discovery of davemaoite, CaSiO 3 -perovskite, as a mineral from the lower mantle"". Science. 376 (6593): eabo0882. doi:10.1126/science.abo0882. ISSN   0036-8075. PMID   35511980.