David J. Griffiths

Last updated

David J. Griffiths
David Griffiths giving autograph.jpg
Griffiths in 2014
Born (1942-12-05) 5 December 1942 (age 81)
NationalityAmerican
Alma mater Harvard University
Known forUndergraduate textbooks
Scientific career
FieldsParticle physics
Electromagnetism
Institutions Reed College
Thesis Covariant Approach to Massless Field Theory in the Radiation Gauge (1970)
Doctoral advisor Sidney Coleman
Signature
Griffiths-signature-vectorized.svg

David Jeffrey Griffiths (born December 5, 1942) is an American physicist and educator. He was on the faculty of Reed College from 1978 through 2009, becoming the Howard Vollum Professor of Science before his retirement. He wrote three highly regarded textbooks for undergraduate physics students.

Contents

Early life and education

Griffiths was born in Arlington, Virginia, the son of Winifred Mary (née Jeffrey) and Gordon Griffiths. [1] [2] Both his parents were faculty members at the University of Washington, his father in the history department [3] and his mother in the zoology department. [2]

Griffiths is a graduate of The Putney School and was trained at Harvard University (B.A., 1964; M.A., 1966; Ph.D., 1970). His doctoral work, Covariant Approach to Massless Field Theory in the Radiation Gauge on theoretical particle physics, [4] was supervised by Sidney Coleman.

Career

Griffiths is principally known as the author of three highly regarded textbooks for undergraduate physics students: Introduction to Elementary Particles (published in 1987, second edition published 2008), Introduction to Quantum Mechanics (published in 1995, third edition published 2018), and Introduction to Electrodynamics (published in 1981, fourth edition published in 2012).

Awards, honors

Griffiths was the recipient of the 1997 Robert A. Millikan award reserved for "those who have made outstanding scholarly contributions to physics education". [5] [6]

In 2009 Griffiths was named a Fellow of the American Physical Society, cited "For advancing the upper level physics curriculum through the writing of leading textbooks and through his contributions to the American Journal of Physics in many editorial roles and as an author." [7]

Books

The most recent edition of each book is generally regarded as a standard undergraduate text. [9]

See also

Related Research Articles

A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that always move at the speed of light when in vacuum. The photon belongs to the class of boson particles.

<span class="mw-page-title-main">Quantum mechanics</span> Description of physical properties at the atomic and subatomic scale

Quantum mechanics is a fundamental theory in physics that describes the behavior of nature at and below the scale of atoms. It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science.

<span class="mw-page-title-main">Quantum electrodynamics</span> Quantum field theory of electromagnetism

In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction.

<span class="mw-page-title-main">Julian Schwinger</span> American theoretical physicist (1918–1994)

Julian Seymour Schwinger was a Nobel Prize-winning American theoretical physicist. He is best known for his work on quantum electrodynamics (QED), in particular for developing a relativistically invariant perturbation theory, and for renormalizing QED to one loop order. Schwinger was a physics professor at several universities.

<span class="mw-page-title-main">Yang–Mills theory</span> Physical theory unifying the electromagnetic, weak and strong interactions

The phrase Yang–Mills theory means both a quantum field theory for nuclear binding devised by Chen Ning Yang and Robert Mills in 1953 and the class of similar theories. In mathematical physics, Yang–Mills theory is a gauge theory based on a special unitary group SU(n), or more generally any compact Lie group. A Yang–Mills theory seeks to describe the behavior of elementary particles using these non-abelian Lie groups and is at the core of the unification of the electromagnetic force and weak forces (i.e. U(1) × SU(2)) as well as quantum chromodynamics, the theory of the strong force (based on SU(3)). Thus it forms the basis of our understanding of the Standard Model of particle physics.

<span class="mw-page-title-main">History of quantum field theory</span>

In particle physics, the history of quantum field theory starts with its creation by Paul Dirac, when he attempted to quantize the electromagnetic field in the late 1920s. Major advances in the theory were made in the 1940s and 1950s, leading to the introduction of renormalized quantum electrodynamics (QED). The field theory behind QED was so accurate and successful in predictions that efforts were made to apply the same basic concepts for the other forces of nature. Beginning in 1954, the parallel was found by way of gauge theory, leading by the late 1970s, to quantum field models of strong nuclear force and weak nuclear force, united in the modern Standard Model of particle physics.

<span class="mw-page-title-main">John David Jackson (physicist)</span> Canadian-American theoretical physicist (1925–2016)

John David Jackson was a Canadian–American theoretical physicist. He was a professor at the University of California, Berkeley and a faculty senior scientist emeritus at Lawrence Berkeley National Laboratory.

<span class="mw-page-title-main">John Clive Ward</span> Anglo-Australian physicist (1924–2000)

John Clive Ward, was an Anglo-Australian physicist who made significant contributions to quantum field theory, condensed-matter physics, and statistical mechanics. Andrei Sakharov called Ward one of the titans of quantum electrodynamics.

Quantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to a revolution in physics, a shift in the original scientific paradigm: the development of quantum mechanics.

Asım Orhan Barut was a Turkish-American theoretical physicist.

Steven C. Frautschi is an American theoretical physicist, currently professor of physics emeritus at the California Institute of Technology (Caltech). He is known principally for his contributions to the bootstrap theory of the strong interactions and for his contribution to the resolution of the infrared divergence problem in quantum electrodynamics (QED). He was named a Fellow of the American Physical Society in 2015 for "contributions to the introduction of Regge poles into particle physics, elucidation of the role of infrared photons in high energy scattering, and for seminal contributions to undergraduate physics education".

<span class="mw-page-title-main">Field (physics)</span> Physical quantities taking values at each point in space and time

In physics, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. For example, on a weather map, the surface temperature is described by assigning a number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.e. a 1-dimensional (rank-1) tensor field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of two interacting vector fields at each point in spacetime, or as a single-rank 2-tensor field.

Suraj Narayan Gupta was an Indian-born American theoretical physicist, notable for his contributions to quantum field theory.

<i>The Feynman Lectures on Physics</i> Textbook by Richard Feynman

The Feynman Lectures on Physics is a physics textbook based on a great number of lectures by Richard Feynman, a Nobel laureate who has sometimes been called "The Great Explainer". The lectures were presented before undergraduate students at the California Institute of Technology (Caltech), during 1961–1963. The book's co-authors are Feynman, Robert B. Leighton, and Matthew Sands.

<i>Classical Electrodynamics</i> (book) Graduate textbook by J.D. Jackson

Classical Electrodynamics is a textbook written by theoretical particle and nuclear physicist John David Jackson. The book originated as lecture notes that Jackson prepared for teaching graduate-level electromagnetism first at McGill University and then at the University of Illinois at Urbana-Champaign. Intended for graduate students, and often known as Jackson for short, it has been a standard reference on its subject since its first publication in 1962.

<i>Introduction to Electrodynamics</i> Undergraduate textbook by David J. Griffiths

Introduction to Electrodynamics is a textbook by physicist David J. Griffiths. Generally regarded as a standard undergraduate text on the subject, it began as lecture notes that have been perfected over time. Its most recent edition, the fifth, was published in 2024 by Cambridge University. This book uses SI units exclusively. A table for converting between SI and Gaussian units is given in Appendix C.

Introduction to Quantum Mechanics, often called Griffiths, is an introductory textbook on quantum mechanics by David J. Griffiths. The book is considered a standard undergraduate textbook in the subject. Originally published by Pearson Education in 1995 with a second edition in 2005, Cambridge University Press (CUP) reprinted the second edition in 2017. In 2018, CUP released a third edition of the book with Darrell F. Schroeter as co-author; this edition is known as Griffiths and Schroeter.

<i>Introduction to Elementary Particles</i> (book) Elementary particles textbook by David J. Griffiths

Introduction to Elementary Particles, by David Griffiths, is an introductory textbook that describes an accessible "coherent and unified theoretical structure" of particle physics, appropriate for advanced undergraduate physics students. It was originally published in 1987, and the second revised and enlarged edition was published 2008.

References

  1. "Virginia, U.S., Federal Naturalization Records, 1901-1938" . www.ancestry.com. 1937. Retrieved May 15, 2023.
  2. 1 2 "Mary Griffiths Scientist, Teacher, Activist". The Olympian. February 4, 2007. p. 18. Retrieved May 15, 2023.
  3. "Gordon Griffiths papers - Archives West". archiveswest.orbiscascade.org. Retrieved May 16, 2023.
  4. Griffiths, David Jeffrey (January 1, 1970). Covariant Approach to Massless Field Theory in the Radiation Gauge (PhD thesis). Harvard University. Bibcode:1970PhDT.........6G.
  5. Griffiths, David (December 1997). "Millikan Lecture 1997: Is there a text in this class?". American Journal of Physics. 65 (12): 1141–1143. Bibcode:1997AmJPh..65.1141G. doi: 10.1119/1.18777 .
  6. List of Robert A. Millikan Award Winners at the American Association of Physics Teachers website
  7. "APS Fellow Archive". aps.org. Retrieved May 15, 2023.
  8. Abernathy, William (September 2013). "Review of Revolutions in Twentieth-Century Physics by David Griffiths". Reed Magazine. 92 (3).
  9. "Notes from the Outside Special: Meet David J. Griffiths" (PDF). The Dilated Times: The newsletter of the Drew University Society of Physics Students. Vol. 13, no. 2. Spring 2003. pp. 4–5. Archived from the original (PDF) on December 2, 2020.