Deep cement mixing

Last updated

Deep cement mixing (DCM) is a geotechnical engineering deep foundation ground improvement technique where a binder material, typically cement, is injected into the ground for ground stabilisation and land reclamation. The technique can also be used for containing contaminants and water cut-off. [1] The resulting stabilised soil generally has a higher strength, lower permeability, lower compressibility and reduced liquefaction risk than the original soil. [2] [3] In land reclamation applications it is typically used when cheaper techniques such as dredging or draining cannot be applied because of environmental concerns due to contaminated soil that these two techniques would release. The expansion of the Hong Kong International Airport and Tokyo's Haneda Airport are examples of this.

Deep cement mixing was first developed in Japan where first field tests began in 1970. [4] Originally granular quicklime was used as binder to stabilise the underlying soil, but soon better results were obtained using cement slurry and cement mortar. Until the end of the 1980s, DCM was used only in Japan and Scandinavia. Since then it has gained popularity also in the United States and Europe.

Deep cement mixing consists of using specially designed equipment, such as augers or mixing paddles, to mechanically mix the soil with an in-situ binder. The process simultaneously breaks up the soil without removing it, injects a binder at low pressure and thoroughly mixes the binder with the soil to form a reinforced block of soil after treatment. [3] The soil to be improved is mixed mechanically in-situ either with a binder in a slurry form (wet method) or with a dry binder (dry method). [2] As the soil is soft, the binder material mixes with the soil diffusing back into the excavated hole, so it is important to choose a binder material appropriate for the specific soil, although in the vast majority of cases, cement works well. As the cement-soil mix begins to harden, further cement is added on top of the growing column until the column reaches all the way up to the start. During this process further excavation of the diffusing soil may be required. The deep soil mixing columns are typically 0.6 to 2.4 m in diameter and depths of up to 50m can be reached depending on the nature of the ground conditions and the technique employed. [1] Steel reinforcement can be inserted into fresh soil-mix to increase bending resistance of deep soil mixing columns used for excavation control. [2] Finally the machinery is moved to the location of the next column where the process is repeated in order to form another column. Once fully hardened these columns are then able to bear much higher loads than the seabed (when using the technique to reclaim land) or the typically soft soil upon which one wants to build.

Related Research Articles

<span class="mw-page-title-main">Concrete</span> Composite construction material

Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined.

<span class="mw-page-title-main">Slurry wall</span> Civil engineering technique

A slurry wall is a civil engineering technique used to build reinforced concrete walls in areas of soft earth close to open water, or with a high groundwater table. This technique is typically used to build diaphragm (water-blocking) walls surrounding tunnels and open cuts, and to lay foundations. Slurry walls are used at Superfund sites to contain the waste or contamination and reduce potential future migration of waste constituents, often with other waste treatment methods. Slurry walls are a "well-established" technology but the decision to use slurry walls for a certain project requires geophysical and other engineering studies to develop a plan appropriate for the needs of that specific location. Slurry walls may need to be used in conjunction with other methods to meet project objectives.

<span class="mw-page-title-main">Road surface</span> Road covered with durable surface material

A road surface or pavement is the durable surface material laid down on an area intended to sustain vehicular or foot traffic, such as a road or walkway. In the past, gravel road surfaces, macadam, hoggin, cobblestone and granite setts were extensively used, but these have mostly been replaced by asphalt or concrete laid on a compacted base course. Asphalt mixtures have been used in pavement construction since the beginning of the 20th century and are of two types: metalled (hard-surfaced) and unmetalled roads. Metalled roadways are made to sustain vehicular load and so are usually made on frequently used roads. Unmetalled roads, also known as gravel roads, are rough and can sustain less weight. Road surfaces are frequently marked to guide traffic.

<span class="mw-page-title-main">Mortar (masonry)</span> Workable paste which hardens to bind building blocks

Mortar is a workable paste which hardens to bind building blocks such as stones, bricks, and concrete masonry units, to fill and seal the irregular gaps between them, spread the weight of them evenly, and sometimes to add decorative colors or patterns to masonry walls. In its broadest sense, mortar includes pitch, asphalt, and soft mud or clay, as those used between mud bricks, as well as cement mortar. The word "mortar" comes from Old French mortier, "builder's mortar, plaster; bowl for mixing." (13c.).

<span class="mw-page-title-main">Asphalt concrete</span> Composite material used for paving

Asphalt concrete is a composite material commonly used to surface roads, parking lots, airports, and the core of embankment dams. Asphalt mixtures have been used in pavement construction since the beginning of the twentieth century. It consists of mineral aggregate bound together with bitumen, laid in layers, and compacted.

<span class="mw-page-title-main">Environmental remediation</span> Removal of pollution from soil, groundwater etc.

Environmental remediation is the cleanup of hazardous substances dealing with the removal, treatment and containment of pollution or contaminants from environmental media such as soil, groundwater, sediment. Remediation may be required by regulations before development of land revitalization projects. Developers who agree to voluntary cleanup may be offered incentives under state or municipal programs like New York State's Brownfield Cleanup Program. If remediation is done by removal the waste materials are simply transported off-site for disposal at another location. The waste material can also be contained by physical barriers like slurry walls. The use of slurry walls is well-established in the construction industry. The application of (low) pressure grouting, used to mitigate soil liquefaction risks in San Francisco and other earthquake zones, has achieved mixed results in field tests to create barriers, and site-specific results depend upon many variable conditions that can greatly impact outcomes.

<span class="mw-page-title-main">Tailings</span> Materials left over from the separation of valuable minerals from ore

In mining, tailings or tails are the materials left over after the process of separating the valuable fraction from the uneconomic fraction (gangue) of an ore. Tailings are different from overburden, which is the waste rock or other material that overlies an ore or mineral body and is displaced during mining without being processed.

<span class="mw-page-title-main">Tunnel boring machine</span> Device used to excavate tunnels

A tunnel boring machine (TBM), also known as a "mole", is a machine used to excavate tunnels. Tunnels are excavated through hard rock, wet or dry soil, or sand, each of which requires specialized technology.

<span class="mw-page-title-main">Land reclamation</span> Creating new land from oceans, seas, riverbeds or lakes

Land reclamation, usually known as reclamation, and also known as land fill, is the process of creating new land from oceans, seas, riverbeds or lake beds. The land reclaimed is known as reclamation ground,reclaimed land, or land fill.

In construction or renovation, underpinning is the process of strengthening the foundation of an existing building or other structure. Underpinning may be necessary for a variety of reasons:

<span class="mw-page-title-main">Shotcrete</span> Concrete or mortar building material

Shotcrete, gunite, or sprayed concrete is concrete or mortar conveyed through a hose and pneumatically projected at high velocity onto a surface. This construction technique was invented by Carl Akeley and first used in 1907. The concrete is typically reinforced by conventional steel rods, steel mesh, or fibers.

<span class="mw-page-title-main">Deep foundation</span> Type of foundation

A deep foundation is a type of foundation that transfers building loads to the earth farther down from the surface than a shallow foundation does to a subsurface layer or a range of depths. A pile or piling is a vertical structural element of a deep foundation, driven or drilled deep into the ground at the building site.

In civil engineering, concrete leveling is a procedure that attempts to correct an uneven concrete surface by altering the foundation that the surface sits upon. It is a cheaper alternative to having replacement concrete poured and is commonly performed at small businesses and private homes as well as at factories, warehouses, airports and on roads, highways and other infrastructure.

Landslide mitigation refers to several human-made activities on slopes with the goal of lessening the effect of landslides. Landslides can be triggered by many, sometimes concomitant causes. In addition to shallow erosion or reduction of shear strength caused by seasonal rainfall, landslides may be triggered by anthropic activities, such as adding excessive weight above the slope, digging at mid-slope or at the foot of the slope. Often, individual phenomena join together to generate instability over time, which often does not allow a reconstruction of the evolution of a particular landslide. Therefore, landslide hazard mitigation measures are not generally classified according to the phenomenon that might cause a landslide. Instead, they are classified by the sort of slope stabilization method used:

<span class="mw-page-title-main">Rawmill</span>

A raw mill is the equipment used to grind raw materials into "rawmix" during the manufacture of cement. Rawmix is then fed to a cement kiln, which transforms it into clinker, which is then ground to make cement in the cement mill. The raw milling stage of the process effectively defines the chemistry of the finished cement, and has a large effect upon the efficiency of the whole manufacturing process.

<span class="mw-page-title-main">Hempcrete</span> Biocomposite material used for construction and insulation

Hempcrete or hemplime is biocomposite material, a mixture of hemp hurds (shives) and lime, sand, or pozzolans, which is used as a material for construction and insulation. It is marketed under names like Hempcrete, Canobiote, Canosmose, Isochanvre and IsoHemp. Hempcrete is easier to work with than traditional lime mixes and acts as an insulator and moisture regulator. It lacks the brittleness of concrete and consequently does not need expansion joints.

Ceramic molding is a versatile and precise manufacturing process that transforms clay or porcelain into intricate shapes. Employing techniques like slip casting or press molding, artisans create precise replicas of original models. After molding, the ceramics are fired at high temperatures, ensuring durability and aesthetic appeal. This method is favored for producing intricate pottery, decorative tiles, and even complex industrial components. With its ability to capture fine details and yield consistent results, ceramic molding remains a cornerstone in the world of artistic and functional ceramic production.

In situ chemical oxidation (ISCO), a form of advanced oxidation process, is an environmental remediation technique used for soil and/or groundwater remediation to lower the concentrations of targeted environmental contaminants to acceptable levels. ISCO is accomplished by introducing strong chemical oxidizers into the contaminated medium to destroy chemical contaminants in place. It can be used to remediate a variety of organic compounds, including some that are resistant to natural degradation. The in situ in ISCO is just Latin for "in place", signifying that ISCO is a chemical oxidation reaction that occurs at the site of the contamination.

<span class="mw-page-title-main">Foam concrete</span>

Foam concrete, also known as Lightweight Cellular Concrete (LCC) and Low Density Cellular Concrete (LDCC), and by other names, is defined as a cement-based slurry, with a minimum of 20% foam entrained into the plastic mortar. As mostly no coarse aggregate is used for production of foam concrete the correct term would be called mortar instead of concrete; it may be called "foamed cement" as well. The density of foam concrete usually varies from 400 kg/m3 to 1600 kg/m3. The density is normally controlled by substituting all or part of the fine aggregate with the foam.

<span class="mw-page-title-main">Tunnel construction</span> The construction method for building a tunnel

Tunnels are dug in types of materials varying from soft clay to hard rock. The method of tunnel construction depends on such factors as the ground conditions, the ground water conditions, the length and diameter of the tunnel drive, the depth of the tunnel, the logistics of supporting the tunnel excavation, the final use and shape of the tunnel and appropriate risk management. Tunnel construction is a subset of underground construction.

References

  1. 1 2 "Soil Mixing - Bachy Soletanche".
  2. 1 2 3 "Soil Mixing - Keller".
  3. 1 2 "Soil Mixing - Menard".
  4. Kitazume, Masaki (2013). The Deep Mixing Method. CRC Press. ISBN   978-1-138-00005-6.