Demand forecasting

Last updated

Demand forecasting refers to the process of predicting the quantity of goods and services that will be demanded by consumers at a future point in time. [1] More specifically, the methods of demand forecasting entail using predictive analytics to estimate customer demand in consideration of key economic conditions. This is an important tool in optimizing business profitability through efficient supply chain management. Demand forecasting methods are divided into two major categories, qualitative and quantitative methods. Qualitative methods are based on expert opinion and information gathered from the field. This method is mostly used in situations when there is minimal data available for analysis such as when a business or product has recently been introduced to the market. Quantitative methods, however, use available data, and analytical tools in order to produce predictions. Demand forecasting may be used in resource allocation, inventory management, assessing future capacity requirements, or making decisions on whether to enter a new market. [2]

Contents

Importance of demand forecasting for businesses

Demand forecasting plays an important role for businesses in different industries, particularly with regard to mitigating the risks associated with particular business activities. However, demand forecasting is known to be a challenging task for businesses due to the intricacies of analysis, specifically quantitative analysis. [3] Nevertheless, understanding customer needs is an indispensable part of any industry in order for business activities to be implemented efficiently and more appropriately respond to market needs. If businesses are able to forecast demand effectively, several benefits can be accrued. These include but are not limited to, waste reduction, optimized allocation of resources, and potentially large increases in sales and revenue.

Elaborating on the above, some of the reasons why businesses require demand forecasting include:

  1. Meeting goals - Most successful organisations will have pre-determined growth trajectories and long-term plans to ensure the business is operating at an ideal output. By having an understanding of future demand markets, businesses can be proactive in ensuring that goals will be met in this business environment.
  2. Business decisions - In reference to meeting goals, by having a thorough understanding of future industry demand, management and key board members can make strategic business decisions that encourage higher profitability and growth. These decisions are generally associated with the concepts of capacity, market targeting, raw material acquisition and understanding vendor contract direction.
  3. Growth - By having an accurate understanding of future forecasts, companies can gauge the need for expansion within a timeframe that allows them to do so cost effectively. [4]
  4. Human capital management - If there is a rapid demand increase in an industry but a business does not have enough employees to satisy the sales orders, consumer loyalty may be adversely affected as customers are forced to purchase from competitors. [5]
  5. Financial planning - It is crucial to understand demand forecasts in order to efficiently budget for future operations in terms of factors such as cash flow, inventory accounting and general operational costs. [6] The use of an accurate demand forecasting model can result in significant decreases in operational costs for businesses, since less safety stock is required to be held. [7]

Methods for Forecasting Demand

There are various statistical and econometric analyses used to forecast demand. [8] Forecasting demand can be broken down into seven stage process, the seven stages are described as:

Stage 1: Statement of a theory or hypothesis

The first step to forecast demand is to determine a set of objectives or information to derive different business strategies. These objectives are based on a set of hypotheses that usually come from a mixture of economic theory or previous empirical studies. For example, a manager may wish to find what the optimal price and production amount would be for a new product, based on how demand elasticity affected past company sales.

Stage 2: Model Specification

There are many different econometric models which differ depending on the analysis that managers wish to perform. The type of model that is chosen to forecast demand depends on many different aspects such as the type of data obtained or the number of observations, etc. [9] In this stage it is important to define the type of variables that will be used to forecast demand. Regression analysis is the main statistical method for forecasting. There are many different types of regression analysis but fundamentally, they provide an analysis of how one or multiple variables affect the dependent variable being measured. An example of a model for forecasting demand is M.Roodman's (1986) demand forecasting regression model for measuring the seasonality affects on a data point being measured. [10] The model was based on a linear regression model, and is used to measure linear trends based on seasonal cycles and their affects on demand i.e. the seasonal demand for a product based on sales in summer and winter.

The linear regression model is described as:

Where is the dependent variable, is the intercept, is the slope coefficient, is the independent variable and e is the error term.

M.Roodman's demand forecasting model is based on linear regression and is described as:

is defined as the set of all t - indices for quarter q. The process that generates the data for all periods t that fall in quarter q is given by:

  • = the datum for period
  • β = base demand at the beginning of the time series horizon
  • τ = the linear trend per quarter
  • = the multiplicative seasonal factor for the quarter
  • e = a disturbance term

Stage 3: Data Collection

Once the type of model is specified in stage 2, the data and the method of collecting data must be specified. The model must be specified first in order to determine the variables which need to be collected. Conversely, when deciding on the desired forecasting model, the available data or methods to collect data need to be considered in order to formulate the correct model. Gathering Time series data and cross-sectional data are the different collection methods that may be used. Time series data are based on historical observations taken sequentially in time. These observations are used to derive relevant statistics, characteristics, and insight from the data. [11] The data points that may be collected using time series data may be sales, prices, manufacturing costs, and their corresponding time intervals i.e., weekly, monthly, quarterly, annually, or any other regular interval.  Cross-sectional data refers to data collected on a single entity at different periods of time. Cross-sectional data used in demand forecasting usually depicts a data point gathered from an individual, firm, industry, or area. For example, sales for Firm A during quarter 1. This type of data encapsulates a variety of data points which resulted in the final data point. The subset of data points may not be observable or feasible to determine but can be a practical method for adding precision to the demand forecast model. [12] The source for the data can be found via the firm's records, commercial or private agencies, or official sources.

Stage 4: Estimation of Parameters

Once the model and data are obtained then the values can be computed to determine the effects the independent variables have on the dependent variable in focus. Using the linear regression model as an example of estimating parameters, the following steps are taken:

Linear regression formula:

The first step is to find the line that minimizes the sum of the squares of the difference between the observed values of the dependent variable and the fitted values from the line. [8] This is expressed as which minimizes and , the fitted value from the regression line.

and also need to be represented to find the intercept and slope of the line. The method of determining and is to use partial differentiation with respect to both and by setting both expressions equal to zero and solving them simultaneously. The method for omitting these variables is described below:

Stage 5: Checking the Accuracy of the Model

Calculating demand forecast accuracy is the process of determining the accuracy of forecasts made regarding customer demand for a product. [13] [14] Understanding and predicting customer demand is vital to manufacturers and distributors to avoid stock-outs and to maintain adequate inventory levels. While forecasts are never perfect, they are necessary to prepare for actual demand. In order to maintain an optimized inventory and effective supply chain, accurate demand forecasts are imperative.

Calculating the accuracy of supply chain forecasts

Forecast accuracy in the supply chain is typically measured using the Mean Absolute Percent Error or MAPE. Statistically, MAPE is defined as the average of percentage errors.

Most practitioners, however, define and use the MAPE as the Mean Absolute Deviation divided by Average Sales, which is just a volume-weighted MAPE, also referred to as the MAD/Mean ratio. This is the same as dividing the sum of the absolute deviations by the total sales of all products. This calculation, where A is the actual value and F the forecast, is also known as WAPE, or the Weighted Absolute Percent Error.

Another interesting option is the weighted . The advantage of this measure is that can weight errors. The only problem is that for seasonal products you will create an undefined result when sales = 0 and that is not symmetrical. This means that you can be much more inaccurate if sales are higher than if they are lower than the forecast. So sMAPE also known as symmetric Mean Absolute Percentage Error, is used to correct this.

Finally, for intermittent demand patterns, none of the above are particularly useful. In this situation, a business may consider MASE (Mean Absolute Scaled Error) as a key performance indicator to use. However, the use of this calculation is challenging as it is not as intuitive as the above-mentioned. [15] Another metric to consider, especially when there are intermittent or lumpy demand patterns at hand, is SPEC (Stock-keeping-oriented Prediction Error Costs). [16] The idea behind this metric is to compare predicted demand and actual demand by computing theoretical incurred costs over the forecast horizon. It assumes, that predicted demand higher than actual demand results in stock-keeping costs, whereas predicted demand lower than actual demand results in opportunity costs. SPEC takes into account temporal shifts (prediction before or after actual demand) or cost-related aspects and allows comparisons between demand forecasts based on business aspects as well.

Calculating forecast error

The forecast error needs to be calculated using actual sales as a base. There are several forms of forecast error calculation methods used, namely Mean Percent Error, Root Mean Squared Error, Tracking Signal and Forecast Bias.

Stage 6: Hypothesis testing

Once the model has been determined, the model is used to test the theory or hypothesis stated in the first stage. The results should describe what is trying to be achieved and determine if the theory or hypothesis is true or false. In relation to the example provided in the first stage, the model should show the relationship between demand elasticity of the market and the correlation it has to past company sales. This should enable managers to make an informed decisions regarding the optimal price and production levels for the new product.

Stage 7: Forecasting

The final step is to then forecast demand based on the data set and model created. In order to forecast demand, estimations of a chosen variable are used to determine the effects it has on demand. Regarding the estimation of the chosen variable, a regression model can be used or both qualitative and quantitative assessments can be implemented. Examples of qualitative and quantitative assessments are:

Qualitative assessment

Quantitative assessment

Others

Others include:

  1. Moving average 0003.svg
    moving average
    Time series projection methods
  2. EquityBDP.png
    leading indicator
    Causal methods

See also

Related Research Articles

<span class="mw-page-title-main">Least squares</span> Approximation method in statistics

The method of least squares is a parameter estimation method in regression analysis based on minimizing the sum of the squares of the residuals made in the results of each individual equation.

In statistics, the Gauss–Markov theorem states that the ordinary least squares (OLS) estimator has the lowest sampling variance within the class of linear unbiased estimators, if the errors in the linear regression model are uncorrelated, have equal variances and expectation value of zero. The errors do not need to be normal for the theorem to apply, nor do they need to be independent and identically distributed.

<span class="mw-page-title-main">Deming regression</span> Algorithm for the line of best fit for a two-dimensional dataset

In statistics, Deming regression, named after W. Edwards Deming, is an errors-in-variables model that tries to find the line of best fit for a two-dimensional data set. It differs from the simple linear regression in that it accounts for errors in observations on both the x- and the y- axis. It is a special case of total least squares, which allows for any number of predictors and a more complicated error structure.

<span class="mw-page-title-main">Regression analysis</span> Set of statistical processes for estimating the relationships among variables

In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable and one or more independent variables. The most common form of regression analysis is linear regression, in which one finds the line that most closely fits the data according to a specific mathematical criterion. For example, the method of ordinary least squares computes the unique line that minimizes the sum of squared differences between the true data and that line. For specific mathematical reasons, this allows the researcher to estimate the conditional expectation of the dependent variable when the independent variables take on a given set of values. Less common forms of regression use slightly different procedures to estimate alternative location parameters or estimate the conditional expectation across a broader collection of non-linear models.

Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters. In general, the method provides improved efficiency in parameter estimation problems in exchange for a tolerable amount of bias.

<span class="mw-page-title-main">Total least squares</span>

In applied statistics, total least squares is a type of errors-in-variables regression, a least squares data modeling technique in which observational errors on both dependent and independent variables are taken into account. It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models.

<span class="mw-page-title-main">Coefficient of determination</span> Indicator for how well data points fit a line or curve

In statistics, the coefficient of determination, denoted R2 or r2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable in the input dataset and the output of the (linear) function of the independent variable.

<span class="mw-page-title-main">Simple linear regression</span> Linear regression model with a single explanatory variable

In statistics, simple linear regression (SLR) is a linear regression model with a single explanatory variable. That is, it concerns two-dimensional sample points with one independent variable and one dependent variable and finds a linear function that, as accurately as possible, predicts the dependent variable values as a function of the independent variable. The adjective simple refers to the fact that the outcome variable is related to a single predictor.

In econometrics, the seemingly unrelated regressions (SUR) or seemingly unrelated regression equations (SURE) model, proposed by Arnold Zellner in (1962), is a generalization of a linear regression model that consists of several regression equations, each having its own dependent variable and potentially different sets of exogenous explanatory variables. Each equation is a valid linear regression on its own and can be estimated separately, which is why the system is called seemingly unrelated, although some authors suggest that the term seemingly related would be more appropriate, since the error terms are assumed to be correlated across the equations.

The mean absolute percentage error (MAPE), also known as mean absolute percentage deviation (MAPD), is a measure of prediction accuracy of a forecasting method in statistics. It usually expresses the accuracy as a ratio defined by the formula:

In statistics, a tobit model is any of a class of regression models in which the observed range of the dependent variable is censored in some way. The term was coined by Arthur Goldberger in reference to James Tobin, who developed the model in 1958 to mitigate the problem of zero-inflated data for observations of household expenditure on durable goods. Because Tobin's method can be easily extended to handle truncated and other non-randomly selected samples, some authors adopt a broader definition of the tobit model that includes these cases.

In statistics, semiparametric regression includes regression models that combine parametric and nonparametric models. They are often used in situations where the fully nonparametric model may not perform well or when the researcher wants to use a parametric model but the functional form with respect to a subset of the regressors or the density of the errors is not known. Semiparametric regression models are a particular type of semiparametric modelling and, since semiparametric models contain a parametric component, they rely on parametric assumptions and may be misspecified and inconsistent, just like a fully parametric model.

Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients and ultimately allowing the out-of-sample prediction of the regressandconditional on observed values of the regressors. The simplest and most widely used version of this model is the normal linear model, in which given is distributed Gaussian. In this model, and under a particular choice of prior probabilities for the parameters—so-called conjugate priors—the posterior can be found analytically. With more arbitrarily chosen priors, the posteriors generally have to be approximated.

The topic of heteroskedasticity-consistent (HC) standard errors arises in statistics and econometrics in the context of linear regression and time series analysis. These are also known as heteroskedasticity-robust standard errors, Eicker–Huber–White standard errors, to recognize the contributions of Friedhelm Eicker, Peter J. Huber, and Halbert White.

In statistical theory, the field of high-dimensional statistics studies data whose dimension is larger than typically considered in classical multivariate analysis. The area arose owing to the emergence of many modern data sets in which the dimension of the data vectors may be comparable to, or even larger than, the sample size, so that justification for the use of traditional techniques, often based on asymptotic arguments with the dimension held fixed as the sample size increased, was lacking.

<span class="mw-page-title-main">Errors-in-variables models</span> Regression models accounting for possible errors in independent variables

In statistics, errors-in-variables models or measurement error models are regression models that account for measurement errors in the independent variables. In contrast, standard regression models assume that those regressors have been measured exactly, or observed without error; as such, those models account only for errors in the dependent variables, or responses.

Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods.

Numerical methods for linear least squares entails the numerical analysis of linear least squares problems.

In statistics, linear regression is a statistical model which estimates the linear relationship between a scalar response and one or more explanatory variables. The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable. If the explanatory variables are measured with error then errors-in-variables models are required, also known as measurement error models.

References

  1. Acar, A. Zafer; Yilmaz, Behlül; Kocaoglu, Batuhan (2014-06-16). "DEMAND FORECAST, UP-TO-DATE MODELS, AND SUGGESTIONS FOR IMPROVEMENT AN EXAMPLE OF A BUSINESS" (PDF). Journal of Global Strategic Management. 1 (8): 26–26. doi:10.20460/JGSM.2014815650. ISSN   1307-6205.
  2. Adhikari, Nimai Chand Das; Domakonda, Nishanth; Chandan, Chinmaya; Gupta, Gaurav; Garg, Rajat; Teja, S.; Das, Lalit; Misra, Ashutosh (2019), Smys, S.; Bestak, Robert; Chen, Joy Iong-Zong; Kotuliak, Ivan (eds.), "An Intelligent Approach to Demand Forecasting", International Conference on Computer Networks and Communication Technologies, Singapore: Springer Singapore, vol. 15, pp. 167–183, doi:10.1007/978-981-10-8681-6_17, ISBN   978-981-10-8680-9 , retrieved 2023-04-27
  3. Ivanov, Dmitry; Tsipoulanidis, Alexander; Schönberger, Jörn (2021), Ivanov, Dmitry; Tsipoulanidis, Alexander; Schönberger, Jörn (eds.), "Demand Forecasting", Global Supply Chain and Operations Management: A Decision-Oriented Introduction to the Creation of Value, Cham: Springer International Publishing, pp. 341–357, doi:10.1007/978-3-030-72331-6_11#doi, ISBN   978-3-030-72331-6 , retrieved 2023-04-27
  4. "Demand Forecasting: An Industry Guide". Demand Caster.
  5. "The Advantages of Demand Forecasting". Small Business - Chron.com. Retrieved 2023-04-27.
  6. Diezhandino, Ernesto (2022-07-04). "Importance and Benefits of Forecasting Customer Demand". Keepler | Cloud Data Driven Partner. Retrieved 2023-04-27.
  7. Hamiche, Koussaila; Abouaïssa, Hassane; Goncalves, Gilles; Hsu, Tienté (2018-01-01). "A Robust and Easy Approach for Demand Forecasting in Supply Chains". IFAC-PapersOnLine. 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018. 51 (11): 1732–1737. doi: 10.1016/j.ifacol.2018.08.206 . ISSN   2405-8963.
  8. 1 2 Wilkinson, Nick (2005-05-05). Managerial Economics: A Problem-Solving Approach (1 ed.). Cambridge University Press. doi:10.1017/cbo9780511810534.008. ISBN   978-0-521-81993-0.
  9. Sukhanova*, E.I.; Shirnaeva, S.Y.; Zaychikova, N.A. (2019-03-20). "Modeling And Forecasting Financial Performance Of A Business: Statistical And Econometric Approach". The European Proceedings of Social and Behavioural Sciences. Cognitive-Crcs: 487–496. doi:10.15405/epsbs.2019.03.48. S2CID   159058405.
  10. Roodman, Gary M. (1986). "Exponentially smoothed regression analysis for demand forecasting". Journal of Operations Management. 6 (3–4): 485–497. doi:10.1016/0272-6963(86)90019-7.
  11. Ngan, Chun-Kit, ed. (2019-11-06). Time Series Analysis - Data, Methods, and Applications. IntechOpen. doi:10.5772/intechopen.78491. ISBN   978-1-78984-778-9. S2CID   209066704.
  12. Johnston, Richard G. C.; Brady, Henry E. (2006). Capturing Campaign Effects. Ann Arbor: University of Michigan Press. ISBN   978-0-472-02303-5.
  13. Hyndman, R.J., Koehler, A.B (2005) " Another look at measures of forecast accuracy", Monash University.
  14. Hoover, Jim (2009) "How to Track Forecast Accuracy to Guide Process Improvement", Foresight: The International Journal of Applied Forecasting.
  15. You can find an interesting discussion here.
  16. Martin, Dominik; Spitzer, Philipp; Kühl, Niklas (2020). "A New Metric for Lumpy and Intermittent Demand Forecasts: Stock-keeping-oriented Prediction Error Costs". Proceedings of the 53rd Annual Hawaii International Conference on System Sciences. doi:10.5445/IR/1000098446.

Bibliography