Derivative test

Last updated

In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function.

Contents

The usefulness of derivatives to find extrema is proved mathematically by Fermat's theorem of stationary points.

First-derivative test

The first-derivative test examines a function's monotonic properties (where the function is increasing or decreasing), focusing on a particular point in its domain. If the function "switches" from increasing to decreasing at the point, then the function will achieve a highest value at that point. Similarly, if the function "switches" from decreasing to increasing at the point, then it will achieve a least value at that point. If the function fails to "switch" and remains increasing or remains decreasing, then no highest or least value is achieved.

One can examine a function's monotonicity without calculus. However, calculus is usually helpful because there are sufficient conditions that guarantee the monotonicity properties above, and these conditions apply to the vast majority of functions one would encounter.

Precise statement of monotonicity properties

Stated precisely, suppose that f is a real-valued function defined on some open interval containing the point x and suppose further that f is continuous at x.

Note that in the first case, f is not required to be strictly increasing or strictly decreasing to the left or right of x, while in the last case, f is required to be strictly increasing or strictly decreasing. The reason is that in the definition of local maximum and minimum, the inequality is not required to be strict: e.g. every value of a constant function is considered both a local maximum and a local minimum.

Precise statement of first-derivative test

The first-derivative test depends on the "increasing–decreasing test", which is itself ultimately a consequence of the mean value theorem. It is a direct consequence of the way the derivative is defined and its connection to decrease and increase of a function locally, combined with the previous section.

Suppose f is a real-valued function of a real variable defined on some interval containing the critical point a. Further suppose that f is continuous at a and differentiable on some open interval containing a, except possibly at a itself.

Again, corresponding to the comments in the section on monotonicity properties, note that in the first two cases, the inequality is not required to be strict, while in the third, strict inequality is required.

Applications

The first-derivative test is helpful in solving optimization problems in physics, economics, and engineering. In conjunction with the extreme value theorem, it can be used to find the absolute maximum and minimum of a real-valued function defined on a closed and bounded interval. In conjunction with other information such as concavity, inflection points, and asymptotes, it can be used to sketch the graph of a function.

Second-derivative test (single variable)

After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f(x) = 0), then:

In the last case, Taylor's Theorem may sometimes be used to determine the behavior of f near x using higher derivatives.

Proof of the second-derivative test

Suppose we have (the proof for is analogous). By assumption, . Then

Thus, for h sufficiently small we get

which means that if (intuitively, f is decreasing as it approaches from the left), and that if (intuitively, f is increasing as we go right from x). Now, by the first-derivative test, has a local minimum at .

Concavity test

A related but distinct use of second derivatives is to determine whether a function is concave up or concave down at a point. It does not, however, provide information about inflection points. Specifically, a twice-differentiable function f is concave up if and concave down if . Note that if , then has zero second derivative, yet is not an inflection point, so the second derivative alone does not give enough information to determine whether a given point is an inflection point.

Higher-order derivative test

The higher-order derivative test or general derivative test is able to determine whether a function's critical points are maxima, minima, or points of inflection for a wider variety of functions than the second-order derivative test. As shown below, the second-derivative test is mathematically identical to the special case of n =1 in the higher-order derivative test.

Let f be a real-valued, sufficiently differentiable function on an interval , let , and let be a natural number. Also let all the derivatives of f at c be zero up to and including the n-th derivative, but with the (n +1)th derivative being non-zero:

There are four possibilities, the first two cases where c is an extremum, the second two where c is a (local) saddle point:

Since n must be either odd or even, this analytical test classifies any stationary point of f, so long as a nonzero derivative shows up eventually.

Example

Say we want to perform the general derivative test on the function at the point . To do this, we calculate the derivatives of the function and then evaluate them at the point of interest until the result is nonzero.

,
,
,
,
,
,

As shown above, at the point , the function has all of its derivatives at 0 equal to 0, except for the 6th derivative, which is positive. Thus n = 5, and by the test, there is a local minimum at 0.

Multivariable case

For a function of more than one variable, the second-derivative test generalizes to a test based on the eigenvalues of the function's Hessian matrix at the critical point. In particular, assuming that all second-order partial derivatives of f are continuous on a neighbourhood of a critical point x, then if the eigenvalues of the Hessian at x are all positive, then x is a local minimum. If the eigenvalues are all negative, then x is a local maximum, and if some are positive and some negative, then the point is a saddle point. If the Hessian matrix is singular, then the second-derivative test is inconclusive.

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Derivative</span> Instantaneous rate of change (mathematics)

In mathematics, the derivative shows the sensitivity of change of a function's output with respect to the input. Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances.

<span class="mw-page-title-main">Monotonic function</span> Order-preserving mathematical function

In mathematics, a monotonic function is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order theory.

<span class="mw-page-title-main">Differential calculus</span> Area of mathematics; subarea of calculus

In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve.

In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints. It is named after the mathematician Joseph-Louis Lagrange.

<span class="mw-page-title-main">Rolle's theorem</span> On stationary points between two equal values of a real differentiable function

In calculus, Rolle's theorem or Rolle's lemma essentially states that any real-valued differentiable function that attains equal values at two distinct points must have at least one stationary point somewhere between them—that is, a point where the first derivative is zero. The theorem is named after Michel Rolle.

<span class="mw-page-title-main">Cubic function</span> Polynomial function of degree 3

In mathematics, a cubic function is a function of the form that is, a polynomial function of degree three. In many texts, the coefficientsa, b, c, and d are supposed to be real numbers, and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps complex numbers to complex numbers. In other cases, the coefficients may be complex numbers, and the function is a complex function that has the set of the complex numbers as its codomain, even when the domain is restricted to the real numbers.

<span class="mw-page-title-main">Convex function</span> Real function with secant line between points above the graph itself

In mathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of the function lies above the graph between the two points. Equivalently, a function is convex if its epigraph is a convex set. A twice-differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain. Well-known examples of convex functions of a single variable include a linear function , a quadratic function and an exponential function . In simple terms, a convex function refers to a function whose graph is shaped like a cup , while a concave function's graph is shaped like a cap .

In mathematics, a concave function is the negative of a convex function. A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap, or upper convex.

<span class="mw-page-title-main">Maximum and minimum</span> Largest and smallest value taken by a function takes at a given point

In mathematical analysis, the maximum and minimum of a function are, respectively, the largest and smallest value taken by the function. Known generically as extremum, they may be defined either within a given range or on the entire domain of a function. Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions.

<span class="mw-page-title-main">Inflection point</span> Point where the curvature of a curve changes sign

In differential calculus and differential geometry, an inflection point, point of inflection, flex, or inflection is a point on a smooth plane curve at which the curvature changes sign. In particular, in the case of the graph of a function, it is a point where the function changes from being concave to convex, or vice versa.

In mathematics, the Hessian matrix, Hessian or Hesse matrix is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables. The Hessian matrix was developed in the 19th century by the German mathematician Ludwig Otto Hesse and later named after him. Hesse originally used the term "functional determinants".

<span class="mw-page-title-main">Saddle point</span> Critical point on a surface graph which is not a local extremum

In mathematics, a saddle point or minimax point is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero, but which is not a local extremum of the function. An example of a saddle point is when there is a critical point with a relative minimum along one axial direction and at a relative maximum along the crossing axis. However, a saddle point need not be in this form. For example, the function has a critical point at that is a saddle point since it is neither a relative maximum nor relative minimum, but it does not have a relative maximum or relative minimum in the -direction.

<span class="mw-page-title-main">Stationary point</span> Zero of the derivative of a function

In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero. Informally, it is a point where the function "stops" increasing or decreasing.

<span class="mw-page-title-main">Critical point (mathematics)</span> Point where the derivative of a function is zero

Critical point is a wide term used in many branches of mathematics.

In mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc.

<span class="mw-page-title-main">Second derivative</span> Mathematical operation

In calculus, the second derivative, or the second-order derivative, of a function f is the derivative of the derivative of f. Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the second derivative of the position of an object with respect to time is the instantaneous acceleration of the object, or the rate at which the velocity of the object is changing with respect to time. In Leibniz notation:

<span class="mw-page-title-main">Second partial derivative test</span> Method in multivariable calculus

In mathematics, the second partial derivative test is a method in multivariable calculus used to determine if a critical point of a function is a local minimum, maximum or saddle point.

In mathematics, Fermat's theorem is a method to find local maxima and minima of differentiable functions on open sets by showing that every local extremum of the function is a stationary point. Fermat's theorem is a theorem in real analysis, named after Pierre de Fermat.

In mathematical analysis and its applications, a function of several real variables or real multivariate function is a function with more than one argument, with all arguments being real variables. This concept extends the idea of a function of a real variable to several variables. The "input" variables take real values, while the "output", also called the "value of the function", may be real or complex. However, the study of the complex-valued functions may be easily reduced to the study of the real-valued functions, by considering the real and imaginary parts of the complex function; therefore, unless explicitly specified, only real-valued functions will be considered in this article.

<span class="mw-page-title-main">Glossary of calculus</span> List of definitions of terms and concepts commonly used in calculus

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References