Design of plastic components

Last updated

Injection molding has been one of the most popular ways for fabricating plastic parts for a very long time. They are used in automotive interior parts, electronic housings, housewares, medical equipment, compact discs, and even doghouses. Below are certain rule based standard guidelines which can be referred to while designing parts for injection molding considering manufacturability in mind. [1]

Contents

A small Injection molding machine PlasticsInjectionMoulderJones.jpg
A small Injection molding machine
Typical components in an injection molding machine Injection moulding.png
Typical components in an injection molding machine

Geometric considerations

The most common guidelines refer to the specification of various relationships between geometric parameters which result in easier or better manufacturability. Some of these are as follows:

Wall Thickness

Non-uniform wall sections can contribute to warpage and stresses in molded parts. Sections which are too thin have a higher chance of breakage in handling, may restrict the flow of material and may trap air causing a defective part. Too heavy a wall thickness, on the other hand, will slow the curing cycle and add to material cost and increase cycle time.

Generally, thinner walls are more feasible with small parts rather than with large ones. The limiting factor in wall thinness is the tendency for the plastic material in thin walls to cool and solidify before the mold is filled. The shorter the material flow, the thinner the wall can be. Walls also should be as uniform in thickness as possible to avoid warpage from uneven shrinkage. When changes in wall thickness are unavoidable, the transition should be gradual and not abrupt.

Some plastics are more sensitive to wall thickness than others, where acetal and ABS plastics max out at around 0.12 in. thick (3 mm), acrylic can go to 0.5 in. (12 mm), polyurethane to 0.75 in. (18 mm), and certain fiber-reinforced plastics to 1 in. (25 mm) or more. Even so, designers should recognize that very thick cross sections can increase the likelihood of cosmetic defects like sink. [2]

Draft angles

Draft angle design is an important factor when designing plastic parts. Because of shrinkage of plastic material, injection molded parts have a tendency to shrink onto a core. This creates higher contact pressure on the core surface and increases friction between the core and the part, thus making ejection of the part from the mold difficult. Hence, draft angles should be designed properly to assist in part ejection. This also reduces cycle time and improves productivity. Draft angles should be used on interior and exterior walls of the part along the pulling direction.

Profile view of a drafted cylinder, showing the draft dimension Drafted cylinder profile.png
Profile view of a drafted cylinder, showing the draft dimension

The minimum allowable draft angle is harder to quantify. Plastic material suppliers and molders are the authority on what is the lowest acceptable draft. In most instances, 1degree per side will be sufficient, but between 2 degree and 5 degree per side would be preferable. If the design is not compatible with 1 degree, then allow for 0.5 degree on each side. Even a small draft angle, such as 0.25 degree, is preferable to none at all. [3]

Radius at corners

Generously rounded corners provide a number of advantages. There is less stress concentration on the part and on the tool. Because of sharp corners, material flow is not smooth and tends to be difficult to fill, reduces tooling strength and causes stress concentration. Parts with radii and fillets are more economical and easier to produce, reduce chipping, simplify mold construction and add strength to molded part with good appearance.

Sharp Corners general design guidelines in injection molding suggest that corner radii should be at least one-half the wall thickness. It is recommended to avoid sharp corners and use generous fillets and radii whenever required. During injection molding, the molten plastic has to navigate turns or corners. Rounded corners will ease plastic flow, so engineers should generously radius the corners of all parts. In contrast, sharp inside corners result in molded-in stress particularly during the cooling process when the top of the part tries to shrink and the material pulls against the corners. Moreover, the first rule of plastic design i.e. uniform wall thickness will be obeyed. As the plastic goes around a well-proportioned corner, it will not be subjected to area increases and abrupt changes in direction. Cavity packing pressure stays consistent. This leads to a strong, dimensionally stable corner that will resist post-mold warpage.

Hole depth to diameter ratio

Core pins are used to produce holes in plastic parts. Through holes are easier to produce than blind holes which don't go through the entire part. Blind holes are created by pins that are supported at only one end; hence such pins should not be long. Longer pins will deflect more and be pushed by the pressure of the molten plastic material during molding. It is recommended that hole depth-to-diameter ratio should not be more than 2.

Feature Based Rules

Ribs

A better examples of the plastics designs RFID Tag Nest.jpg
A better examples of the plastics designs

Rib features help in strengthening the molded part without adding to wall thickness. In some cases, they can also act as decorative features. Ribs also provide alignment in mating parts or provide stopping surfaces for assemblies. However, projections like ribs can create cavity filling, venting, and ejection problems. These problems become more troublesome for taller ribs. Ribs need to be designed in correct proportion to avoid defects such as short shots and provide the required strength. Thick and deep ribs can cause sink marks and filling problems respectively. Deep ribs can also lead to ejection problems. If ribs are too long or too wide, supporting ribs may be required. It is better to use a number of smaller ribs instead of one large rib.

Boss

Boss, a basic design element in plastics, is typically cylindrical and used as a mounting fixture, location point, reinforcement feature or spacer. Under service conditions, bosses are often subjected to loadings not encountered in other sections of a component.

Boss feature in plastic parts such as Lego bricks Lego Color Bricks.jpg
Boss feature in plastic parts such as Lego bricks
Presence of undercuts in the design can make it difficult to remove the molded product from the molds Undercut machining.png
Presence of undercuts in the design can make it difficult to remove the molded product from the molds

Undercut detection

Undercuts should be avoided for ease of manufacturing. Undercuts typically require additional mechanisms for manufacture adding to mold cost and complexity. In addition, the part must have room to flex and deform. Clever part design or minor design concessions often can eliminate complex mechanisms for undercuts. Undercuts may require additional time for unloading molds. It is recommended that undercuts on a part should be avoided to the extent possible.

Fillet

Sharp corners increase concentrations, which are prone to air entrapments, air voids, and sink marks hence weakening the structural integrity of the plastic part. It must be eliminated using radii whenever is possible. It is recommended that an inside radius be a minimum of one times the thickness. At corners, the suggested inside radius is 0.5 times the material thickness and the outside radius is 1.5 times the material thickness. A bigger radius should be used if part design allows

Fillet Designs for Plastic Components Fillet Designs for Plastic Components.png
Fillet Designs for Plastic Components

Holes

Simulation

Injection Moulding Simulation for a component from an Equerry Pro shoe shiner Injection-moulding-animation.gif
Injection Moulding Simulation for a component from an Equerry Pro shoe shiner

The design of injection moulded components can be further improved and optimised by using injection moulding simulation software such as Autodesk Moldflow [5] and SolidWorks Plastics [6] . This software works with components designed in CAD to simulate how a polymer behaves when it enters a injection mould cavity. It can predict how the molten material flows and freezes, any part geometry that is too thin or too thick and if there are any weaknesses created in the plastic from defects such as weld lines.

When simulation is undertaken in the design phase of a project, in advance of the tool being manufactured, it can help to identify the problems discussed above and allow the designer to iteratively modify and re-simulate the design to make improvements. Use of simulation in the design phase can help to reduce problems with the physical mould and therefore reduce time to market, reduce the use of material and energy, prevent surface defects such as sink and flow marks, and reduce the time taken to inject, cool and eject the part, improving the injection moulding machine's output rate. [7] [8]




Related Research Articles

<span class="mw-page-title-main">Injection moulding</span> Manufacturing process for producing parts by injecting molten material into a mould, or mold

Injection moulding is a manufacturing process for producing parts by injecting molten material into a mould, or mold. Injection moulding can be performed with a host of materials mainly including metals, glasses, elastomers, confections, and most commonly thermoplastic and thermosetting polymers. Material for the part is fed into a heated barrel, mixed, and injected into a mould cavity, where it cools and hardens to the configuration of the cavity. After a product is designed, usually by an industrial designer or an engineer, moulds are made by a mould-maker from metal, usually either steel or aluminium, and precision-machined to form the features of the desired part. Injection moulding is widely used for manufacturing a variety of parts, from the smallest components to entire body panels of cars. Advances in 3D printing technology, using photopolymers that do not melt during the injection moulding of some lower-temperature thermoplastics, can be used for some simple injection moulds.

<span class="mw-page-title-main">Die casting</span> Metal casting process

Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter, and tin-based alloys. Depending on the type of metal being cast, a hot- or cold-chamber machine is used.

Thermoforming is a manufacturing process where a plastic sheet is heated to a pliable forming temperature, formed to a specific shape in a mold, and trimmed to create a usable product. The sheet, or "film" when referring to thinner gauges and certain material types, is heated in an oven to a high-enough temperature that permits it to be stretched into or onto a mold and cooled to a finished shape. Its simplified version is vacuum forming.

<span class="mw-page-title-main">Vacuum forming</span> Thermoforming of plastic material

Vacuum forming is a simplified version of thermoforming, where a sheet of plastic is heated to a forming temperature, stretched onto a single-surface mould, and forced against the mould by a vacuum. This process can be used to form plastic into permanent objects such as turnpike signs and protective covers. Normally draft angles are present in the design of the mould to ease removal of the formed plastic part from the mould.

<span class="mw-page-title-main">Compression molding</span> Method of molding

Compression molding is a method of molding in which the molding material, generally preheated, is first placed in an open, heated mold cavity. The mold is closed with a top force or plug member, pressure is applied to force the material into contact with all mold areas, while heat and pressure are maintained until the molding material has cured; this process is known as compression molding method and in case of rubber it is also known as 'Vulcanisation'. The process employs thermosetting resins in a partially cured stage, either in the form of granules, putty-like masses, or preforms.

<span class="mw-page-title-main">Blow molding</span> Manufacturing process for forming and joining together hollow plastic parts

Blow molding is a manufacturing process for forming hollow plastic parts. It is also used for forming glass bottles or other hollow shapes.

<span class="mw-page-title-main">Rotational molding</span> Making hollow plastic objects in a heated mold

Rotational molding involves a heated mold which is filled with a charge or shot weight of material. It is then slowly rotated, causing the softened material to disperse and stick to the walls of the mold forming a hollow part. In order to form an even thickness throughout the part, the mold rotates at all times during the heating phase, and then continues to rotate during the cooling phase to avoid sagging or deformation. The process was applied to plastics in the 1950s but in the early years was little used because it was a slow process restricted to a small number of plastics. Over time, improvements in process control and developments with plastic powders have resulted in increased use.

In-mould labelling is the use of paper or plastic labels during the manufacturing of containers by blow molding, injection molding, or thermoforming processes. The label serves as the integral part of the final product, which is then delivered as pre-decorated item. Combining the decoration process with the moulding process cuts the total cost, but can increase the manufacturing time. The technology was first developed by Owens-Illinois in cooperation with Procter & Gamble to supply pre-labelled bottles that could be filled on the product filling line. This was first applied to Head & Shoulders shampoo bottles.

Fusible core injection molding, also known as lost core injection molding, is a specialized plastic injection molding process used to mold internal cavities or undercuts that are not possible to mold with demoldable cores. Strictly speaking the term "fusible core injection molding" refers to the use of a fusible alloy as the core material; when the core material is made from a soluble plastic the process is known as soluble core injection molding. This process is often used for automotive parts, such as intake manifolds and brake housings, however it is also used for aerospace parts, plumbing parts, bicycle wheels, and footwear.

<span class="mw-page-title-main">Deep drawing</span>

Deep drawing is a sheet metal forming process in which a sheet metal blank is radially drawn into a forming die by the mechanical action of a punch. It is thus a shape transformation process with material retention. The process is considered "deep" drawing when the depth of the drawn part exceeds its diameter. This is achieved by redrawing the part through a series of dies.

Permanent mold casting is a metal casting process that employs reusable molds, usually made from metal. The most common process uses gravity to fill the mold, however gas pressure or a vacuum are also used. A variation on the typical gravity casting process, called slush casting, produces hollow castings. Common casting metals are aluminium, magnesium, and copper alloys. Other materials include tin, zinc, and lead alloys and iron and steel are also cast in graphite molds.

Flow marks, also known as flow lines, are molding defects that can occur in the manufacturing process of injection molding. They are best described as "off tone" wavy lines/streaks or patterns in the molded part around the injection ports. They commonly occur when there is a large variation between cooling speeds of sections of the material as it flows through the mold.

A core is a device used in casting and moulding processes to produce internal cavities and reentrant angles. The core is normally a disposable item that is destroyed to get it out of the piece. They are most commonly used in sand casting, but are also used in die casting and injection moulding.

Plastic forming machines, or plastic molding machines, were developed on the basis of rubber machinery and metal die-casting machines. After the inception of the polymer injection molding process in the 1870s, plastic-forming machines were rapidly developed up until the 1930s. With the gradual commercialization of plastic molding equipment, injection molding and extrusion molding became the most common industrialized processes. Blow molding is the third-largest plastic molding method after the injection molding and extrusion blow molding methods.

Thin wall injection molding is a specialized form of conventional injection molding that focuses on mass-producing plastic parts that are thin and light so that material cost savings can be made and cycle times can be as short as possible. Shorter cycle times means higher productivity and lower costs per part.

Injection mold construction is the process of creating molds that are used to perform injection molding operations using an injection molding machine. These are generally used to produce plastic parts using a core and a cavity.

<span class="mw-page-title-main">DFM Guidelines for Hot Metal Extrusion Process</span>

Extrusion is a metal forming process to form parts with constant cross-section along its length. This process uses a metal billet or ingot which is inserted in a chamber. One side of this contains a die to produce the desired cross section and the other side a hydraulic ram is present to push the metal billet or ingot. Metal flows around the profile of the die and after solidification takes the desired shape.
Extrusion process can be done with the material hot or cold, but most of the metals are heated before the process, if high surface finish and tight tolerances are required then the material is not heated.

<span class="mw-page-title-main">Rule-based DFM analysis for electric discharge machining</span>

Electrical discharge machining (or EDM) is one of the most accurate manufacturing processes available for creating complex or simple shapes and geometries within parts and assemblies. A machining method typically used for hard metals, EDM makes it possible to work with metals for which traditional machining techniques are ineffective.

Transfer molding is a manufacturing process in which casting material is forced into a mold. Transfer molding is different from compression molding in that the mold is enclosed rather than open to the fill plunger resulting in higher dimensional tolerances and less environmental impact. Compared to injection molding, transfer molding uses higher pressures to uniformly fill the mold cavity. This allows thicker reinforcing fiber matrices to be more completely saturated by resin. Furthermore, unlike injection molding the transfer mold casting material may start the process as a solid. This can reduce equipment costs and time dependency. The transfer process may have a slower fill rate than an equivalent injection molding process.

<span class="mw-page-title-main">Gas-assisted injection molding</span> Type of plastics manufacturing process

Gas-assisted injection molding is a molding process where an inert gas is injected into the melted plastic pushing it further into the mold and resulting in hollow parts.

References

  1. "DFMPro for Injection Molding".
  2. "Protomold:Design tips for Rapid Injection Molding".
  3. "Custom Tips for Injection Molding".
  4. Greene, Joseph. "Mold requirements".
  5. https://www.autodesk.co.uk/products/moldflow/overview
  6. https://www.solidworks.com/product/solidworks-plastics
  7. https://www.raymont-osman.com/plastic-injection-moulding-simulation-and-analysis/
  8. https://www.findoutaboutplastics.com/2022/05/6-benefits-of-injection-moulding.html