Desulfobacterales

Last updated

Desulfobacterales
Stromatolites Volcanic Lake.jpg
Stromatolites next to a volcanic lake, found to harbor abundant Desulfobacterales
Scientific classification
Domain:
Phylum:
Class:
Waite et al. 2020
Order:
Desulfobacterales

Kuever, Rainey & Widdel 2006
Families

See text

Desulfobacterales are an order of sulfate-reducing bacteria within the phylum Thermodesulfobacteria. [1] The order contains three families; Desulfobacteraceae, Desulfobulbaceae, and Nitrospinaceae. [2] The bacterium in this order are strict anaerobic respirators, using sulfate or nitrate as the terminal electron acceptor instead of oxygen. Desulfobacterales can degrade ethanol, molecular hydrogen, organic acids, and small hydrocarbons. [3] [4] The bacterium of this order have a wide ecological range and play important environmental roles in symbiotic relationships and nutrient cycling.

Contents

Habitat

Desulfobacterales are found globally and often in extreme environments, such as deep-sea hydrothermal vents, hot springs, marine sediment, and solfataric fields, an area of volcanic venting that gives off sulfurous gases. [5] [6]

Symbiotic Relationships

Sulfate-reduction by Desulfobacteraceae and Desulfobulbaceae in coastal marine sediments plays an important role in molecular hydrogen cycling through a close relationship with fermenting microorganisms. [7] Fermenting microbes break down organic materials on the seafloor and produce molecular oxygen and organic acids. Molecular hydrogen is an essential electron donor used by Desulfobacterales; they use the molecular hydrogen produced by fermentation to drive sulfate reduction. This feedback loop maintains molecular hydrogen at an energetically favorable level for fermenting respiration and provides ample molecular hydrogen for sulfate reduction. [7]

Nitrogen Cycling

Nitrogen cycle pathways in mangrove ecosystems. Pathways for the nitrogen cycle in mangrove forests.webp
Nitrogen cycle pathways in mangrove ecosystems.

Human activity, such as increased fertilizer use, has caused nitrogen pollution in inland and coastal waters. An influx of nitrogen inputs into aquatic ecosystems can cause negative effects such as eutrophication, resulting in anoxic conditions. [8] Desulfobacterales are important in nitrogen pollution mitigation in coastal mangrove ecosystems through nitrate reduction. [9] Nitrate is reduced by Desulfobacterales species via dissimilatory nitrate reduction genes. Dissimilatory nitrate reduction accounts for roughly 75.7–85.9% of nitrate reduction in mangrove ecosystems. [9] Dissimilatory nitrate reduction is important because nitrate is reduced to ammonium, which can then be taken up by other microorganisms and plants in the system. [9]

Phylogeny

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [10] and National Center for Biotechnology Information (NCBI) [11]

16S rRNA based LTP_08_2023 [12] [13] [14] 120 marker proteins based GTDB 08-RS214 [15] [16] [17]

Desulfonema ishimotoei

Desulfatibacillaceae

Desulfatirhabdiaceae

Desulfobacteriaceae Galushko & Kuever 2021

Desulfosudaceae

Desulfococcaceae

Desulfosalsimonadaceae

Desulfosarcinaceae

Desulforegulaceae

Desulfofabaceae Galushko & Kuever 2021

Desulfofaba fastidiosa

Desulfolunaceae

Desulfobacteraceae

Desulfatibacillaceae Waite et al. 2020

"Magnetomoraceae" Waite et al. 2020

Desulfatirhabdiaceae Waite et al. 2020

Desulfonema magna

Desulfococcaceae Waite et al. 2020

"Desulfaltiaceae" Pallen, Rodriguez-R & Alikhan 2022

"Desulfatibiaceae" Pallen, Rodriguez-R & Alikhan 2022

Desulfosarcinaceae Waite et al. 2020

Desulfosudaceae Galushko & Kuever 2021

Desulfosalsimonadaceae Galushko & Kuever 2021

Desulfolunaceae Waite et al. 2020

Desulforegulaceae Waite et al. 2020

Desulfobacteraceae Kuever, Rainey & Widdel 2006

See also

Related Research Articles

Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain.

<span class="mw-page-title-main">Denitrification</span> Microbially facilitated process

Denitrification is a microbially facilitated process where nitrate (NO3) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitrification as a type of respiration that reduces oxidized forms of nitrogen in response to the oxidation of an electron donor such as organic matter. The preferred nitrogen electron acceptors in order of most to least thermodynamically favorable include nitrate (NO3), nitrite (NO2), nitric oxide (NO), nitrous oxide (N2O) finally resulting in the production of dinitrogen (N2) completing the nitrogen cycle. Denitrifying microbes require a very low oxygen concentration of less than 10%, as well as organic C for energy. Since denitrification can remove NO3, reducing its leaching to groundwater, it can be strategically used to treat sewage or animal residues of high nitrogen content. Denitrification can leak N2O, which is an ozone-depleting substance and a greenhouse gas that can have a considerable influence on global warming.

<span class="mw-page-title-main">Desulfovibrionales</span> Order of bacteria

Desulfovibrionales are a taxonomic order of bacteria belonging to the phylum Thermodesulfobacteriota, with four families. They are Gram-negative. The majority are sulfate-reducing, with the exception of Lawsonia and Bilophila. All members of this order are obligately anaerobic. Most species are mesophilic, but some are moderate thermophiles.

The Syntrophobacterales are an order of Thermodesulfobacteriota. All genera are strictly anaerobic. Many of the family Syntrophobacteraceae are sulfate-reducing. Some species are motile by using one polar flagellum.

The Desulfobacteraceae are a family of Thermodesulfobacteriota. They reduce sulfates to sulfides to obtain energy and are strictly anaerobic. They have a respiratory and fermentative type of metabolism. Some species are chemolithotrophic and use inorganic materials to obtain energy and use hydrogen as their electron donor.

The Desulfobulbaceae are a family of Thermodesulfobacteriota. They reduce sulphates to sulphides to obtain energy and are anaerobic.

<span class="mw-page-title-main">Sulfate-reducing microorganism</span> Microorganisms that "breathe" sulfates

Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate (SO2−
4
) as terminal electron acceptor, reducing it to hydrogen sulfide (H2S). Therefore, these sulfidogenic microorganisms "breathe" sulfate rather than molecular oxygen (O2), which is the terminal electron acceptor reduced to water (H2O) in aerobic respiration.

<span class="mw-page-title-main">Archaeoglobaceae</span> Family of archaea

Archaeoglobaceae are a family of the Archaeoglobales. All known genera within the Archaeoglobaceae are hyperthermophilic and can be found near undersea hydrothermal vents. Archaeoglobaceae are the only family in the order Archaeoglobales, which is the only order in the class Archaeoglobi.

<span class="mw-page-title-main">Mangrove forest</span> Productive wetlands that occur in coastal intertidal zones

Mangrove forests, also called mangrove swamps, mangrove thickets or mangals, are productive wetlands that occur in coastal intertidal zones. Mangrove forests grow mainly at tropical and subtropical latitudes because mangroves cannot withstand freezing temperatures. There are about 80 different species of mangroves, all of which grow in areas with low-oxygen soil, where slow-moving waters allow fine sediments to accumulate.

<span class="mw-page-title-main">Sulfur-reducing bacteria</span> Microorganisms able to reduce elemental sulfur to hydrogen sulfide

Sulfur-reducing bacteria are microorganisms able to reduce elemental sulfur (S0) to hydrogen sulfide (H2S). These microbes use inorganic sulfur compounds as electron acceptors to sustain several activities such as respiration, conserving energy and growth, in absence of oxygen. The final product of these processes, sulfide, has a considerable influence on the chemistry of the environment and, in addition, is used as electron donor for a large variety of microbial metabolisms. Several types of bacteria and many non-methanogenic archaea can reduce sulfur. Microbial sulfur reduction was already shown in early studies, which highlighted the first proof of S0 reduction in a vibrioid bacterium from mud, with sulfur as electron acceptor and H
2
as electron donor. The first pure cultured species of sulfur-reducing bacteria, Desulfuromonas acetoxidans, was discovered in 1976 and described by Pfennig Norbert and Biebel Hanno as an anaerobic sulfur-reducing and acetate-oxidizing bacterium, not able to reduce sulfate. Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds. In general, sulfate-reducing bacteria are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its abundancy and thermodynamic stability, sulfate is the most studied electron acceptor for anaerobic respiration that involves sulfur compounds. Elemental sulfur, however, is very abundant and important, especially in deep-sea hydrothermal vents, hot springs and other extreme environments, making its isolation more difficult. Some bacteria – such as Proteus, Campylobacter, Pseudomonas and Salmonella – have the ability to reduce sulfur, but can also use oxygen and other terminal electron acceptors.

<i>Beggiatoa</i> Genus of bacteria

Beggiatoa is a genus of Gammaproteobacteria belonging to the order Thiotrichales, in the Pseudomonadota phylum. This genus was one of the first bacteria discovered by Ukrainian botanist Sergei Winogradsky. During his research in Anton de Bary's laboratory of botany in 1887, he found that  Beggiatoa  oxidized  hydrogen sulfide  (H2S) as an energy source, forming intracellular  sulfur  droplets, with oxygen as the terminal electron acceptor and CO2 used as a carbon source. Winogradsky named it in honor of the Italian doctor and botanist  Francesco Secondo Beggiato (1806 - 1883), from Venice. Winogradsky referred to this form of metabolism as "inorgoxidation" (oxidation of inorganic compounds), today called chemolithotrophy. These organisms live in sulfur-rich environments such as soil, both marine and freshwater, in the deep sea hydrothermal vents and in polluted marine environments. The finding represented the first discovery of lithotrophy. Two species of Beggiatoa have been formally described: the type species Beggiatoa alba and Beggiatoa leptomitoformis, the latter of which was only published in 2017. This colorless and filamentous bacterium, sometimes in association with other sulfur bacteria (for example the genus Thiothrix), can be arranged in biofilm visible to the naked eye formed by a very long white filamentous mat, the white color is due to the stored sulfur. Species of Beggiatoa have cells up to 200 µm in diameter and they are one of the largest prokaryotes on Earth.

<span class="mw-page-title-main">Campylobacterota</span> Class of bacteria

Campylobacterota are a phylum of bacteria. All species of this phylum are Gram-negative.

Pyrobaculum is a genus of the Thermoproteaceae.

Sulfur is metabolized by all organisms, from bacteria and archaea to plants and animals. Sulfur can have an oxidation state from -2 to +6 and is reduced or oxidized by a diverse range of organisms. The element is present in proteins, sulfate esters of polysaccharides, steroids, phenols, and sulfur-containing coenzymes.

Desulfosporosinus is a genus of strictly anaerobic, sulfate-reducing bacteria, often found in soil.

Sulfurimonas is a bacterial genus within the class of Campylobacterota, known for reducing nitrate, oxidizing both sulfur and hydrogen, and containing Group IV hydrogenases. This genus consists of four species: Sulfurimonas autorophica, Sulfurimonas denitrificans, Sulfurimonas gotlandica, and Sulfurimonas paralvinellae. The genus' name is derived from "sulfur" in Latin and "monas" from Greek, together meaning a “sulfur-oxidizing rod”. The size of the bacteria varies between about 1.5-2.5 μm in length and 0.5-1.0 μm in width. Members of the genus Sulfurimonas are found in a variety of different environments which include deep sea-vents, marine sediments, and terrestrial habitats. Their ability to survive in extreme conditions is attributed to multiple copies of one enzyme. Phylogenetic analysis suggests that members of the genus Sulfurimonas have limited dispersal ability and its speciation was affected by geographical isolation rather than hydrothermal composition. Deep ocean currents affect the dispersal of Sulfurimonas spp., influencing its speciation. As shown in the MLSA report of deep-sea hydrothermal vents Campylobacterota, Sulfurimonas has a higher dispersal capability compared with deep sea hydrothermal vent thermophiles, indicating allopatric speciation.

Sulfurovum is a genus within the Campylobacterota which was first described in 2004 with the isolation and description of the type species Sulfurovum lithotrophicum from Okinawa trough hydrothermal sediments. Named for their ability to oxidize sulfur and their egg-like shape, cells are gram-negative, coccoid to short rods. Mesophilic chemolithoautotrophic growth occurs by oxidation of sulfur compounds coupled to the reduction of nitrate or molecular oxygen.

Dissimilatory nitrate reduction to ammonium (DNRA), also known as nitrate/nitrite ammonification, is the result of anaerobic respiration by chemoorganoheterotrophic microbes using nitrate (NO3) as an electron acceptor for respiration. In anaerobic conditions microbes which undertake DNRA oxidise organic matter and use nitrate (rather than oxygen) as an electron acceptor, reducing it to nitrite, then ammonium (NO3→NO2→NH4+).

<span class="mw-page-title-main">Microbial oxidation of sulfur</span>

Microbial oxidation of sulfur is the oxidation of sulfur by microorganisms to build their structural components. The oxidation of inorganic compounds is the strategy primarily used by chemolithotrophic microorganisms to obtain energy to survive, grow and reproduce. Some inorganic forms of reduced sulfur, mainly sulfide (H2S/HS) and elemental sulfur (S0), can be oxidized by chemolithotrophic sulfur-oxidizing prokaryotes, usually coupled to the reduction of oxygen (O2) or nitrate (NO3). Anaerobic sulfur oxidizers include photolithoautotrophs that obtain their energy from sunlight, hydrogen from sulfide, and carbon from carbon dioxide (CO2).

The Thermodesulfobacteriaceae are a family of sulfate-reducing bacteria.

References

  1. Waite, David W; Chuvochina, Maria; Pelikan, Claus; Parks, Donovan H; Yilmaz, Pelin; Wagner, Michael; Loy, Alexander; Naganuma, Takeshi; Nakai, Ryosuke; Whitman, William B; Hahn, Martin W; Kuever, Jan; Hugenholtz, PhilipYR 2020 (2020). "Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities". International Journal of Systematic and Evolutionary Microbiology. 70 (11): 5972–6016. doi: 10.1099/ijsem.0.004213 . ISSN   1466-5034. PMID   33151140. S2CID   226257730.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  2. "ITIS - Report: Desulfobacterales". www.itis.gov. Retrieved 2022-10-02.
  3. Govil, Tanvi; Rathinam, Navanietha K.; Salem, David R.; Sani, Rajesh K. (2019-01-01), Das, Surajit; Dash, Hirak Ranjan (eds.), "Chapter 35 - Taxonomical Diversity of Extremophiles in the Deep Biosphere", Microbial Diversity in the Genomic Era, Academic Press, pp. 631–656, ISBN   978-0-12-814849-5 , retrieved 2022-11-06
  4. Marozava, Sviatlana; Mouttaki, Housna; Müller, Hubert; Laban, Nidal Abu; Probst, Alexander J.; Meckenstock, Rainer U. (2018-02-01). "Anaerobic degradation of 1-methylnaphthalene by a member of the Thermoanaerobacteraceae contained in an iron-reducing enrichment culture". Biodegradation. 29 (1): 23–39. doi:10.1007/s10532-017-9811-z. ISSN   1572-9729. PMC   5773621 . PMID   29177812.
  5. "solfatara | geology". www.britannica.com. Retrieved 2022-11-06.
  6. Saini, Rashmi; Kapoor, Rupam; Kumar, Rita; Siddiqi, T. O.; Kumar, Anil (2011-11-01). "CO2 utilizing microbes — A comprehensive review". Biotechnology Advances. 29 (6): 949–960. doi:10.1016/j.biotechadv.2011.08.009. ISSN   0734-9750. PMID   21856405.
  7. 1 2 Dyksma, Stefan; Pjevac, Petra; Ovanesov, Kin; Mussmann, Marc (February 2018). "Evidence for H 2 consumption by uncultured Desulfobacterales in coastal sediments: H 2 -consuming sulfate reducers in coastal sediments". Environmental Microbiology. 20 (2): 450–461. doi:10.1111/1462-2920.13880. PMID   28772023. S2CID   44713600.
  8. Camargo, Julio A.; Alonso, Álvaro (2006-08-01). "Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment". Environment International. 32 (6): 831–849. doi:10.1016/j.envint.2006.05.002. hdl: 10261/294824 . ISSN   0160-4120. PMID   16781774.
  9. 1 2 3 Nie, Shiqing; Zhang, Zufan; Mo, Shuming; Li, Jinhui; He, Sheng; Kashif, Muhammad; Liang, Zhengwu; Shen, Peihong; Yan, Bing; Jiang, Chengjian (2021-05-15). "Desulfobacterales stimulates nitrate reduction in the mangrove ecosystem of a subtropical gulf". Science of the Total Environment. 769: 144562. Bibcode:2021ScTEn.769n4562N. doi:10.1016/j.scitotenv.2020.144562. ISSN   0048-9697. PMID   33460836. S2CID   231641138.
  10. A.C. Parte; et al. "Desulfobacterales". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2023-09-09.
  11. Sayers; et al. "Desulfobacterales". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2023-09-09.
  12. "The LTP" . Retrieved 20 November 2023.
  13. "LTP_all tree in newick format" . Retrieved 20 November 2023.
  14. "LTP_08_2023 Release Notes" (PDF). Retrieved 20 November 2023.
  15. "GTDB release 08-RS214". Genome Taxonomy Database . Retrieved 10 May 2023.
  16. "bac120_r214.sp_label". Genome Taxonomy Database . Retrieved 10 May 2023.
  17. "Taxon History". Genome Taxonomy Database . Retrieved 10 May 2023.