Dexel

Last updated

The term Dexel has two common uses: Dexel ("depth pixel") is a concept used for a discretized representation of functions defined on surfaces used in geometrical modeling and physical simulation, [1] sometimes also referred to as multilevel Z-map. [2] Dexel is a nodal value of a scalar or vector field on a meshed surface. Dexels are used in simulation of manufacturing processes (such as turning, [3] milling [4] or rapid prototyping [5] ), when workpiece surfaces are subject to modifications. It is practical to express the surface evolution by dexels especially when the surface evolution scale is very different from the structural finite element 3D model discretization step (e.g. in machining the depth of cut variation is often several orders of magnitude smaller (1–10 μm) than the FE model mesh step (1 mm)).

Dexel ("detector element") is the analog of a pixel ("picture element") but native to a detector rather than a visible picture. [6] [7] That is, it describes the elements in a detector, which may be processed, combined, resampled, or otherwise mangled, before creating a picture. As such, there may not be a one-to-one correspondence between the pixels in an image, and the dexels used to create that image. For example, cameras labeled as "10-megapixel" can be used to create a 640x480 picture. Using dexel terminology, the camera actually uses 10 million dexels to create a picture with 640x480 pixels.

Related Research Articles

<span class="mw-page-title-main">Rendering (computer graphics)</span> Process of generating an image from a model

Rendering or image synthesis is the process of generating a photorealistic or non-photorealistic image from a 2D or 3D model by means of a computer program. The resulting image is referred to as the render. Multiple models can be defined in a scene file containing objects in a strictly defined language or data structure. The scene file contains geometry, viewpoint, textures, lighting, and shading information describing the virtual scene. The data contained in the scene file is then passed to a rendering program to be processed and output to a digital image or raster graphics image file. The term "rendering" is analogous to the concept of an artist's impression of a scene. The term "rendering" is also used to describe the process of calculating effects in a video editing program to produce the final video output.

A discrete element method (DEM), also called a distinct element method, is any of a family of numerical methods for computing the motion and effect of a large number of small particles. Though DEM is very closely related to molecular dynamics, the method is generally distinguished by its inclusion of rotational degrees-of-freedom as well as stateful contact, particle deformation and often complicated geometries. With advances in computing power and numerical algorithms for nearest neighbor sorting, it has become possible to numerically simulate millions of particles on a single processor. Today DEM is becoming widely accepted as an effective method of addressing engineering problems in granular and discontinuous materials, especially in granular flows, powder mechanics, ice and rock mechanics. DEM has been extended into the Extended Discrete Element Method taking heat transfer, chemical reaction and coupling to CFD and FEM into account.

<span class="mw-page-title-main">Computational fluid dynamics</span> Analysis and solving of problems that involve fluid flows

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is typically performed using experimental apparatus such as wind tunnels. In addition, previously performed analytical or empirical analysis of a particular problem can be used for comparison. A final validation is often performed using full-scale testing, such as flight tests.

<span class="mw-page-title-main">Particle system</span> Technique in game physics, motion graphics and computer graphics

A particle system is a technique in game physics, motion graphics, and computer graphics that uses many minute sprites, 3D models, or other graphic objects to simulate certain kinds of "fuzzy" phenomena, which are otherwise very hard to reproduce with conventional rendering techniques – usually highly chaotic systems, natural phenomena, or processes caused by chemical reactions.

<span class="mw-page-title-main">Volume rendering</span> Representing a 3D-modeled object or dataset as a 2D projection

In scientific visualization and computer graphics, volume rendering is a set of techniques used to display a 2D projection of a 3D discretely sampled data set, typically a 3D scalar field.

<span class="mw-page-title-main">Geologic modelling</span> Applied science of creating computerized representations of portions of the Earths crust

Geologic modelling,geological modelling or geomodelling is the applied science of creating computerized representations of portions of the Earth's crust based on geophysical and geological observations made on and below the Earth surface. A geomodel is the numerical equivalent of a three-dimensional geological map complemented by a description of physical quantities in the domain of interest. Geomodelling is related to the concept of Shared Earth Model; which is a multidisciplinary, interoperable and updatable knowledge base about the subsurface.

Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs).

The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations, including fluid mechanics, acoustics, electromagnetics, fracture mechanics, and contact mechanics.

<span class="mw-page-title-main">Lloyd's algorithm</span> Algorithm used for points in euclidean space

In electrical engineering and computer science, Lloyd's algorithm, also known as Voronoi iteration or relaxation, is an algorithm named after Stuart P. Lloyd for finding evenly spaced sets of points in subsets of Euclidean spaces and partitions of these subsets into well-shaped and uniformly sized convex cells. Like the closely related k-means clustering algorithm, it repeatedly finds the centroid of each set in the partition and then re-partitions the input according to which of these centroids is closest. In this setting, the mean operation is an integral over a region of space, and the nearest centroid operation results in Voronoi diagrams.

<span class="mw-page-title-main">Mesh generation</span> Subdivision of space into cells

Mesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain. Meshes are created by computer algorithms, often with human guidance through a GUI, depending on the complexity of the domain and the type of mesh desired. A typical goal is to create a mesh that accurately captures the input domain geometry, with high-quality (well-shaped) cells, and without so many cells as to make subsequent calculations intractable. The mesh should also be fine in areas that are important for the subsequent calculations.

<span class="mw-page-title-main">Computational electromagnetics</span> Branch of physics

Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment using computers.

<span class="mw-page-title-main">Meshfree methods</span> Methods in numerical analysis not requiring knowledge of neighboring points

In the field of numerical analysis, meshfree methods are those that do not require connection between nodes of the simulation domain, i.e. a mesh, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort. The absence of a mesh allows Lagrangian simulations, in which the nodes can move according to the velocity field.

The material point method (MPM) is a numerical technique used to simulate the behavior of solids, liquids, gases, and any other continuum material. Especially, it is a robust spatial discretization method for simulating multi-phase (solid-fluid-gas) interactions. In the MPM, a continuum body is described by a number of small Lagrangian elements referred to as 'material points'. These material points are surrounded by a background mesh/grid that is used to calculate terms such as the deformation gradient. Unlike other mesh-based methods like the finite element method, finite volume method or finite difference method, the MPM is not a mesh based method and is instead categorized as a meshless/meshfree or continuum-based particle method, examples of which are smoothed particle hydrodynamics and peridynamics. Despite the presence of a background mesh, the MPM does not encounter the drawbacks of mesh-based methods which makes it a promising and powerful tool in computational mechanics.

<span class="mw-page-title-main">Finite element method</span> Numerical method for solving physical or engineering problems

The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.

This is a glossary of terms relating to computer graphics.

Dynamical energy analysis (DEA) is a method for numerically modelling structure borne sound and vibration in complex structures. It is applicable in the mid-to-high frequency range and is in this regime computational more efficient than traditional deterministic approaches (such as finite element and boundary element methods). In comparison to conventional statistical approaches such as statistical energy analysis (SEA), DEA provides more structural details and is less problematic with respect to subsystem division. The DEA method predicts the flow of vibrational wave energy across complex structures in terms of (linear) transport equations. These equations are then discretized and solved on meshes.

<span class="mw-page-title-main">FEATool Multiphysics</span>

FEATool Multiphysics is a physics, finite element analysis (FEA), and partial differential equation (PDE) simulation toolbox. FEATool Multiphysics features the ability to model fully coupled heat transfer, fluid dynamics, chemical engineering, structural mechanics, fluid-structure interaction (FSI), electromagnetics, as well as user-defined and custom PDE problems in 1D, 2D (axisymmetry), or 3D, all within a graphical user interface (GUI) or optionally as script files. FEATool has been employed and used in academic research, teaching, and industrial engineering simulation contexts.

<span class="mw-page-title-main">Numerical modeling (geology)</span> Technique to solve geological problems by computational simulation

In geology, numerical modeling is a widely applied technique to tackle complex geological problems by computational simulation of geological scenarios.

<span class="mw-page-title-main">Natural element method</span>

The natural element method (NEM) is a meshless method to solve partial differential equation, where the elements do not have a predefined shape as in the finite element method, but depend on the geometry.

<span class="mw-page-title-main">Michel Bercovier</span> Professor of Scientific Computing

Michel Bercovier is a French-Israeli Professor (Emeritus) of Scientific Computing and Computer Aided Design (CAD) in The Rachel and Selim Benin School of Computer Science and Engineering at the Hebrew University of Jerusalem. Bercovier is also the head of the School of Computer Science at the Hadassah Academic College, Jerusalem.

References

  1. Zhao, Wei; Xiaoping Qian (2009). "Mathematical Morphology in Multi-Dexel Representation". ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol. 2. pp. 733–742. doi:10.1115/DETC2009-87722. ISBN   978-0-7918-4899-9. Archived from the original on 2013-02-23. Retrieved 2011-07-07.
  2. Choi, Byoung K.; Robert B. Jerard (1998). Sculptured surface machining: theory and applications. Kluwer Academic. ISBN   978-0-412-78020-2.
  3. Lorong, Philippe; Arnaud Larue; Alexis Perez Duarte (April 2011). "Dynamic Study of Thin Wall Part Turning" (PDF). Advanced Materials Research. 223: 591–599. doi:10.4028/www.scientific.net/AMR.223.591. ISSN   1662-8985. S2CID   73705430.
  4. Assouline, S.; E. Beauchesne; G. Coffignal; P. Lorong; A. Marty (2002). "Numerical simulation of machining at the macroscopic scale: Dynamic models of the workpiece". Mécanique & Industries. 3 (4): 389–402. doi:10.1016/S1296-2139(02)01178-8. ISSN   1296-2139. S2CID   109360557.
  5. Xinrui Gao; Shusheng Zhang; Zengxuan Hou (2007-08-24). "Three Direction DEXEL Model of Polyhedrons and Its Application". Third International Conference on Natural Computation, 2007. ICNC 2007. Third International Conference on Natural Computation, 2007. ICNC 2007. Vol. 5. IEEE. pp. 145–149. doi:10.1109/ICNC.2007.777. ISBN   978-0-7695-2875-5.
  6. Pierre Grangeat (5 January 2010). Tomography. John Wiley & Sons. ISBN   978-0-470-61037-4.
  7. Jerrold T. Bushberg (20 December 2011). The Essential Physics of Medical Imaging. Lippincott Williams & Wilkins. ISBN   978-0-7817-8057-5.