Dielectric heating

Last updated
A microwave oven uses dielectric heating to cook food. Microwave oven flashon.jpg
A microwave oven uses dielectric heating to cook food.

Dielectric heating, also known as electronic heating, radio frequency heating, and high-frequency heating, is the process in which a radio frequency (RF) alternating electric field, or radio wave or microwave electromagnetic radiation heats a dielectric material. At higher frequencies, this heating is caused by molecular dipole rotation within the dielectric.

Contents

Mechanism

Molecular rotation occurs in materials containing polar molecules having an electrical dipole moment, with the consequence that they will align themselves in an electromagnetic field. If the field is oscillating, as it is in an electromagnetic wave or in a rapidly oscillating electric field, these molecules rotate continuously by aligning with it. This is called dipole rotation, or dipolar polarisation. As the field alternates, the molecules reverse direction. Rotating molecules push, pull, and collide with other molecules (through electrical forces), distributing the energy to adjacent molecules and atoms in the material. The process of energy transfer from the source to the sample is a form of radiative heating.

Temperature is related to the average kinetic energy (energy of motion) of the atoms or molecules in a material, so agitating the molecules in this way increases the temperature of the material. Thus, dipole rotation is a mechanism by which energy in the form of electromagnetic radiation can raise the temperature of an object. There are also many other mechanisms by which this conversion occurs. [1]

Dipole rotation is the mechanism normally referred to as dielectric heating, and is most widely observable in the microwave oven where it operates most effectively on liquid water, and also, but much less so, on fats and sugars. This is because fats and sugar molecules are far less polar than water molecules, and thus less affected by the forces generated by the alternating electromagnetic fields. Outside of cooking, the effect can be used generally to heat solids, liquids, or gases, provided they contain some electric dipoles.

Dielectric heating involves the heating of electrically insulating materials by dielectric loss. A changing electric field across the material causes energy to be dissipated as the molecules attempt to line up with the continuously changing electric field. This changing electric field may be caused by an electromagnetic wave propagating in free space (as in a microwave oven), or it may be caused by a rapidly alternating electric field inside a capacitor. In the latter case, there is no freely propagating electromagnetic wave, and the changing electric field may be seen as analogous to the electric component of an antenna near field. In this case, although the heating is accomplished by changing the electric field inside the capacitive cavity at radio-frequency (RF) frequencies, no actual radio waves are generated or absorbed. In this sense, the effect is the direct electrical analog of magnetic induction heating, which is also near-field effect (thus not involving radio waves).[ citation needed ]

Frequencies in the range of 10–100  MHz are necessary to cause dielectric heating, although higher frequencies work equally well or better, and in some materials (especially liquids) lower frequencies also have significant heating effects, often due to more unusual mechanisms. For example, in conductive liquids such as salt water, ion-drag causes heating, as charged ions are "dragged" more slowly back and forth in the liquid under influence of the electric field, striking liquid molecules in the process and transferring kinetic energy to them, which is eventually translated into molecular vibrations and thus into thermal energy.[ citation needed ]

Dielectric heating at low frequencies, as a near-field effect, requires a distance from electromagnetic radiator to absorber of less than 1/2π1/6 of a wavelength. It is thus a contact process or near-contact process, since it usually sandwiches the material to be heated (usually a non-metal) between metal plates taking the place of the dielectric in what is effectively a very large capacitor. However, actual electrical contact is not necessary for heating a dielectric inside a capacitor, as the electric fields that form inside a capacitor subjected to a voltage do not require electrical contact of the capacitor plates with the (non-conducting) dielectric material between the plates. Because lower frequency electrical fields penetrate non-conductive materials far more deeply than do microwaves, heating pockets of water and organisms deep inside dry materials like wood, it can be used to rapidly heat and prepare many non-electrically conducting food and agricultural items, so long as they fit between the capacitor plates.[ citation needed ]

At very high frequencies, the wavelength of the electromagnetic field becomes shorter than the distance between the metal walls of the heating cavity, or than the dimensions of the walls themselves. This is the case inside a microwave oven. In such cases, conventional far-field electromagnetic waves form (the cavity no longer acts as a pure capacitor, but rather as an antenna), and are absorbed to cause heating, but the dipole-rotation mechanism of heat deposition remains the same. However, microwaves are not efficient at causing the heating effects of low frequency fields that depend on slower molecular motion, such as those caused by ion-drag.[ citation needed ]

Power

Dielectric heating must be distinguished from Joule heating of conductive media, which is caused by induced electric currents in the media. [2] For dielectric heating, the generated power density per volume is given by: [2] [3]

where ω is the angular frequency of the exciting radiation, εr″ is the imaginary part of the complex relative permittivity of the absorbing material, ε0 is the permittivity of free space and E the electric field strength. The imaginary part of the (frequency-dependent) relative permittivity is a measure for the ability of a dielectric material to convert electromagnetic field energy into heat, also called dielectric loss. (The real part of the permittivity is the normal effect of capacitance and results in non-dissipative reactive power.)

If the conductivity σ of the material is small, or the frequency is high, such that σωε (with ε = εr″ · ε0), then Joule heating is low, and dielectric heating is the dominant mechanism of loss of energy from the electromagnetic field into the medium.

Penetration

Microwave frequencies penetrate conductive materials, including semi-solid substances like meat and living tissue. The penetration essentially stops where all the penetrating microwave energy has been converted to heat in the tissue. Microwave ovens used to heat food are not set to the frequency for optimal absorption by water. If they were, then the piece of food or liquid in question would absorb all microwave radiation in its outer layer, leading to a cool, unheated centre and a superheated surface. [4] Instead, the frequency selected allows energy to penetrate deeper into the heated food. The frequency of a household microwave oven is 2.45 GHz, while the frequency for optimal absorbency by water is around 10 GHz. [5]

Radio-frequency heating

The use of high-frequency electric fields for heating dielectric materials had been proposed in the 1930s. For example, U.S. Patent 2,147,689 (application by Bell Telephone Laboratories, dated 1937) states:

"This invention relates to heating systems for dielectric materials and the object of the invention is to heat such materials uniformly and substantially simultaneously throughout their mass. It has been proposed therefore to heat such materials simultaneously throughout their mass by means of the dielectric loss produced in them when they are subjected to a high voltage, high frequency field."

This patent proposed radio frequency (RF) heating at 10 to 20 megahertz (wavelength 15 to 30 meters). [6] Such wavelengths were far longer than the cavity used, and thus made use of near-field effects and not electromagnetic waves. (Commercial microwave ovens use wavelengths only 1% as long.)

In agriculture, RF dielectric heating has been widely tested and is increasingly used as a way to kill pests in certain food crops after harvest, such as walnuts still in the shell. Because RF heating can heat foods more uniformly than is the case with microwave heating, RF heating holds promise as a way to process foods quickly. [7]

In medicine, the RF heating of body tissues, called diathermy, is used for muscle therapy [8] Heating to higher temperatures, called hyperthermia therapy, is used to kill cancer and tumor tissue.

RF heating is used in the wood industry to cure glues used in plywood manufacturing, fingerjointing, and furniture construction. RF heating can also be used to speed up drying lumber.

Microwave heating

In addition to heating food, microwaves are widely used for heating in many industrial processes. An industrial microwave tunnel oven for heating plastic parts prior to extrusion. Microwave tunnel closeup.jpg
In addition to heating food, microwaves are widely used for heating in many industrial processes. An industrial microwave tunnel oven for heating plastic parts prior to extrusion.

Microwave heating, as distinct from RF heating, is a sub-category of dielectric heating at frequencies above 100 MHz, where an electromagnetic wave can be launched from a small dimension emitter and guided through space to the target. Modern microwave ovens make use of electromagnetic waves with electric fields of much higher frequency and shorter wavelength than RF heaters. Typical domestic microwave ovens operate at 2.45 GHz, but 915 MHz ovens also exist. This means that the wavelengths employed in microwave heating are 0.1 cm to 10 cm. [9] This provides for highly efficient, but less penetrative, dielectric heating.[ citation needed ]

Although a capacitor-like set of plates can be used at microwave frequencies, they are not necessary, since the microwaves are already present as far field type EM radiation, and their absorption does not require the same proximity to a small antenna as does RF heating. The material to be heated (a non-metal) can therefore simply be placed in the path of the waves, and heating takes place in a non-contact process which does not require capacitative conductive plates.[ citation needed ]

Microwave volumetric heating

Microwave volumetric heating is a commercially available method of heating liquids, suspensions, or solids in a continuous flow on an industrial scale. Microwave volumetric heating has a greater penetration depth, of up to 42 millimetres (1.7 in), which is an even penetration through the entire volume of the flowing product. This is advantageous in commercial applications where increased shelf-life can be achieved, with increased microbial kill at temperatures 10–15 °C (18–27 °F) lower than when using conventional heating systems.

Applications of microwave volumetric heating include:

Food application

In drying of foods, dielectric heating is usually combined with conventional heating. It may be used to preheat the feed to a hot-air drier. By raising the temperature of the feed quickly and causing moisture to move to the surface, it can decrease the overall drying time. Dielectric heating may be applied part-way through the drying cycle, when the food enters the falling rate period. This can boost the rate of drying. If dielectric heating is applied near the end of hot-air drying it can also shorten the drying time significantly and hence increase the throughput of the drier. It is more usual to use dielectric heating in the later stages of drying. One of the major applications of RF heating is in the postbaking of biscuits. The objectives in baking biscuits are to produce a product of the right size, shape, color, and moisture content. In a conventional oven, reducing the moisture content to the desired level can take up a large part of the total baking time. The application of RF heating can shorten the baking time. The oven is set to produce biscuits of the right size, shape, and color, but the RF heating is used to remove the remaining moisture, without excessive heating of the already dry sections of the biscuit. [10] The capacity of an oven can be increased by more than 50% by the use of RF heating. Postbaking by RF heating has also been applied to breakfast cereals and cereal-based baby foods. [11]

Food quality is maximized and better retained using electromagnetic energy than conventional heating. Conventional heating results in large disparity in temperature and longer processing times which can cause overprocessing on the food surface and impairment of the overall quality of the product. [12] Electromagnetic energy can achieve higher processing temperatures in shorter times, therefore, more nutritional and sensory properties are conserved. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Electromagnetic radiation</span> Waves of the electromagnetic field

In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. Types of EMR include radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays, all of which are part of the electromagnetic spectrum.

<span class="mw-page-title-main">Electromagnetic spectrum</span> Range of frequencies or wavelengths of electromagnetic radiation

The electromagnetic spectrum is the spectrum of electromagnetic radiation, ranging over a domain of frequencies and their respective wavelengths and photon energies.

<span class="mw-page-title-main">Microwave</span> Electromagnetic radiation with wavelengths from 1 m to 1 mm

Microwave is a form of electromagnetic radiation with wavelengths ranging from about 30 centimeters to one millimeter corresponding to frequencies between 1000 MHz and 300 GHz respectively. Different sources define different frequency ranges as microwaves; the above broad definition includes UHF, SHF and EHF bands. A more common definition in radio-frequency engineering is the range between 1 and 100 GHz. In all cases, microwaves include the entire SHF band at minimum. Frequencies in the microwave range are often referred to by their IEEE radar band designations: S, C, X, Ku, K, or Ka band, or by similar NATO or EU designations.

<span class="mw-page-title-main">Dielectric</span> Electrically insulating substance able to be polarised by an applied electric field

In electromagnetism, a dielectric is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor, because they have no loosely bound, or free, electrons that may drift through the material, but instead they shift, only slightly, from their average equilibrium positions, causing dielectric polarisation. Because of dielectric polarisation, positive charges are displaced in the direction of the field and negative charges shift in the direction opposite to the field. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarised, but also reorient so that their symmetry axes align to the field.

In electrical engineering, electrical length is a dimensionless parameter equal to the physical length of an electrical conductor such as a cable or wire, divided by the wavelength of alternating current at a given frequency traveling through the conductor. In other words, it is the length of the conductor measured in wavelengths. It can alternately be expressed as an angle, in radians or degrees, equal to the phase shift the alternating current experiences traveling through the conductor.

Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around 20 kHz to around 300 GHz. This is roughly between the upper limit of audio frequencies and the lower limit of infrared frequencies. These are the frequencies at which energy from an oscillating current can radiate off a conductor into space as radio waves, so they are used in radio technology, among other uses. Different sources specify different upper and lower bounds for the frequency range.

<span class="mw-page-title-main">Permittivity</span> Measure of the electric polarizability of a dielectric

In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ε (epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy in the material. In electrostatics, the permittivity plays an important role in determining the capacitance of a capacitor.

<span class="mw-page-title-main">Microwave oven</span> Kitchen cooking appliance

A microwave oven or simply microwave is an electric oven that heats and cooks food by exposing it to electromagnetic radiation in the microwave frequency range. This induces polar molecules in the food to rotate and produce thermal energy in a process known as dielectric heating. Microwave ovens heat foods quickly and efficiently because excitation is fairly uniform in the outer 25–38 mm(1–1.5 inches) of a homogeneous, high-water-content food item.

<span class="mw-page-title-main">Radio wave</span> Type of electromagnetic radiation

Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below. At 300 GHz, the corresponding wavelength is 1mm, which is shorter than the diameter of a grain of rice. At 30 Hz the corresponding wavelength is ~10,000 kilometers, which is longer than the radius of the Earth. Wavelength of a radio wave is inversely proportional to its frequency, because its velocity is constant. Like all electromagnetic waves, radio waves in a vacuum travel at the speed of light, and in the Earth's atmosphere at a slightly slower speed. Radio waves are generated by charged particles undergoing acceleration, such as time-varying electric currents. Naturally occurring radio waves are emitted by lightning and astronomical objects, and are part of the blackbody radiation emitted by all warm objects.

<span class="mw-page-title-main">Antenna (radio)</span> Electrical device

In radio engineering, an antenna or aerial is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

<span class="mw-page-title-main">Resonator</span> Device or system that exhibits resonance

A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator can be either electromagnetic or mechanical. Resonators are used to either generate waves of specific frequencies or to select specific frequencies from a signal. Musical instruments use acoustic resonators that produce sound waves of specific tones. Another example is quartz crystals used in electronic devices such as radio transmitters and quartz watches to produce oscillations of very precise frequency.

<span class="mw-page-title-main">Electrosurgery</span> Use of high-frequency, alternating polarity, electrical current in medical operations

Electrosurgery is the application of a high-frequency alternating polarity, electrical current to biological tissue as a means to cut, coagulate, desiccate, or fulgurate tissue. Its benefits include the ability to make precise cuts with limited blood loss. Electrosurgical devices are frequently used during surgical operations helping to prevent blood loss in hospital operating rooms or in outpatient procedures.

Non-thermal microwave effects or specific microwave effects have been posited in order to explain unusual observations in microwave chemistry. The main effect of the absorption of microwaves by dielectric materials is a brief displacement in the permanent dipoles which causes rotational entropy. Since the frequency of the microwave energy is much faster than the electrons can absorb, the resultant energy can cause frictional heating of nearby atoms or molecules. If the material is rigid there will be no release of rotational energy, and therefore no heating. There are no "Non-thermal effects". If the material is not a dielectric material with dipoles or an ionic distribution, there is no interaction with microwaves and no heating. Non-thermal effects in liquids are almost certainly non-existent, as the time for energy redistribution between molecules in a liquid is much less than the period of a microwave oscillation. A 2005 review has illustrated this in application to organic chemistry, though clearly supports the existence of non-thermal effects. It has been shown that such non-thermal effects exist in the reaction of O + HCl(DCl) -> OH(OD) + Cl in the gas phase and the authors suggest that some mechanisms may also be present in the condensed phase. Non-thermal effects in solids are still part of an ongoing debate. It is likely that through focusing of electric fields at particle interfaces, microwaves cause plasma formation and enhance diffusion in solids via second-order effects. As a result, they may enhance solid-state sintering processes. Debates continued in 2006 about non-thermal effects of microwaves that have been reported in solid-state phase transitions. A 2013 essay concluded the effect did not exist in organic synthesis involving liquid phases. A 2015 perspective discusses the non-thermal microwave effect in relation to selective heating by Debye relaxation processes.

<span class="mw-page-title-main">Radiation-absorbent material</span> RAM Technology

In materials science, radiation-absorbent material (RAM) is a material which has been specially designed and shaped to absorb incident RF radiation, as effectively as possible, from as many incident directions as possible. The more effective the RAM, the lower the resulting level of reflected RF radiation. Many measurements in electromagnetic compatibility (EMC) and antenna radiation patterns require that spurious signals arising from the test setup, including reflections, are negligible to avoid the risk of causing measurement errors and ambiguities.

In electrical engineering, dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy. It can be parameterized in terms of either the loss angleδ or the corresponding loss tangenttan(δ). Both refer to the phasor in the complex plane whose real and imaginary parts are the resistive (lossy) component of an electromagnetic field and its reactive (lossless) counterpart.

<span class="mw-page-title-main">Microwave cavity</span> Metal structure which confines microwaves or radio waves for resonance

A microwave cavity or radio frequency cavity is a special type of resonator, consisting of a closed metal structure that confines electromagnetic fields in the microwave or RF region of the spectrum. The structure is either hollow or filled with dielectric material. The microwaves bounce back and forth between the walls of the cavity. At the cavity's resonant frequencies they reinforce to form standing waves in the cavity. Therefore, the cavity functions similarly to an organ pipe or sound box in a musical instrument, oscillating preferentially at a series of frequencies, its resonant frequencies. Thus it can act as a bandpass filter, allowing microwaves of a particular frequency to pass while blocking microwaves at nearby frequencies.

Microwave burns are burn injuries caused by thermal effects of microwave radiation absorbed in a living organism.

<span class="mw-page-title-main">Non-ionizing radiation</span> Harmless low-frequency radiation

Non-ionizingradiation refers to any type of electromagnetic radiation that does not carry enough energy per quantum to ionize atoms or molecules—that is, to completely remove an electron from an atom or molecule. Instead of producing charged ions when passing through matter, non-ionizing electromagnetic radiation has sufficient energy only for excitation. Non-ionizing radiation is not a significant health risk. In contrast, ionizing radiation has a higher frequency and shorter wavelength than non-ionizing radiation, and can be a serious health hazard: exposure to it can cause burns, radiation sickness, many kinds of cancer, and genetic damage. Using ionizing radiation requires elaborate radiological protection measures, which in general are not required with non-ionizing radiation.

Microwave volumetric heating (MVH) is a method of using microwaves to evenly heat the entire volume of a flowing liquid, suspension or semi-solid. The process is known as MVH because the microwaves penetrate uniformly throughout the volume of the product being heated, thus delivering energy evenly into the body of the material.

Radio-frequency welding, also known as dielectric welding and high-frequency welding, is a plastic welding process that utilizes high-frequency electric fields to induce heating and melting of thermoplastic base materials. The electric field is applied by a pair of electrodes after the parts being joined are clamped together. The clamping force is maintained until the joint solidifies. Advantages of this process are fast cycle times, automation, repeatability, and good weld appearance. Only plastics which have dipoles can be heated using radio waves and therefore not all plastics are able to be welded using this process. Also, this process is not well suited for thick or overly complex joints. The most common use of this process is lap joints or seals on thin plastic sheets or parts.

References

  1. Shah, Yadish (2018-01-12). Thermal Energy: Sources, Recovery, and Applications. Baton Rouge, FL: CRC Press. ISBN   9781315305936 . Retrieved 27 March 2018.
  2. 1 2 Pryor, Roger. "Modeling Dielectric Heating: A First Principles Approach" (PDF). Pryor Knowledge Systems, Inc. Retrieved 27 March 2018.
  3. Vollmer, Michael (2004). "Physics of the microwave oven". Physics Education. IOP. 39 (74): 74–81. Bibcode:2004PhyEd..39...74V. doi:10.1088/0031-9120/39/1/006. S2CID   250796895.
  4. Slepkov, Aaron (2018). "Why aren't microwaves tuned to the resonant frequency of water? What would happen if they were?".
  5. Whittaker, Gavin (1997). "A Basic Introduction to Microwave Chemistry". Archived from the original on July 6, 2010.
  6. U.S. Patent 2,147,689 . Method and apparatus for heating dielectric materials - J.G. Chafee
  7. Piyasena P; et al. (2003), "Radio frequency heating of foods: principles, applications and related properties—a review", Crit Rev Food Sci Nutr, 43 (6): 587–606, doi:10.1080/10408690390251129, PMID   14669879, S2CID   24407944
  8. "Diathermy", Collins English Dictionary - Complete & Unabridged 10th Edition. Retrieved August 29, 2013, from Dictionary.com website
  9. "The Electromagnetic Spectrum". NASA Goddard Space Flight Center, Astronaut's Toolbox. Retrieved November 30, 2016.
  10. Fellows, P.J. (2017). Food Processing Technology: Principles and Practice. United Kingdom: Woodhead Publishing. pp. 826–827. ISBN   978-0-08-101907-8.
  11. Brennan, J.G. (2003). "DRYING | Dielectric and Osmotic Drying". Encyclopedia of Food Sciences and Nutrition (Second Edition): 1938–1942. doi:10.1016/B0-12-227055-X/00372-2. ISBN   9780122270550.
  12. Datta, Ashim K.; Davidson, P. Michael (2000-11-01). "Microwave and Radio Frequency Processing". Journal of Food Science. 65: 32–41. doi:10.1111/j.1750-3841.2000.tb00616.x. ISSN   1750-3841.
  13. Fellows, Peter (2017). Food processing technology. Woodheat publishing. pp. 813–840. ISBN   978-0-08-101907-8.