Diepoxybutane

Last updated
Diepoxybutane
Diepoxybutane.svg
Names
Preferred IUPAC name
2,2′-Bioxirane
Other names
1,1′-Bi[ethylene oxide]; 1,2:3,4-Diepoxybutane; 1,3-Butadiene diepoxide; Bioxirane; Butadiene dioxide; Butane diepoxide; Dioxybutadiene
Identifiers
3D model (JSmol)
AbbreviationsDEB
79831
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.014.527 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 206-060-6 215-979-1
PubChem CID
UNII
UN number 3384 3082
  • InChI=1S/C4H6O2/c1-3(5-1)4-2-6-4/h3-4H,1-2H2
    Key: ZFIVKAOQEXOYFY-UHFFFAOYSA-N
  • InChI=1/C4H6O2/c1-3(5-1)4-2-6-4/h3-4H,1-2H2
    Key: ZFIVKAOQEXOYFY-UHFFFAOYAG
  • C1OC1C2CO2
Properties
C4H6O2
Molar mass 86.090 g·mol−1
Density 1.113 g/cm3 (18 °C) [1]
Melting point 4 °C (39 °F; 277 K) [1]
Boiling point 138 °C (280 °F; 411 K) [1]
Miscible [1]
Vapor pressure 0.52 kPa (at 20 °C) [2]
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-acid.svg GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg
Danger
H226, H301, H310, H311, H314, H330, H340, H350
P201, P202, P210, P233, P240, P241, P242, P243, P260, P262, P264, P270, P271, P280, P281, P284, P301+P310, P301+P330+P331, P302+P350, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P308+P313, P310, P312, P320, P321, P322, P330, P361, P363, P370+P378, P403+P233, P403+P235, P405, P501
Flash point 46 °C (115 °F; 319 K) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Diepoxybutane (also known as butane diepoxide, butadiene diepoxide, or 1,2:3,4-diepoxybutane) is an epoxide which is a colorless liquid at room temperature. [3] It is therefore highly reactive, more than other ethers. An epoxide is a cyclic ether that contains a three atom ring that comes close to an equilateral triangle. The primary structure of an epoxide contains two carbon atoms and a hydrocarbon attached to an oxygen atom. It polymerizes in the presence of catalysts or when heated. [4] It’s hydrophilic, very flammable and easily ignited by heat or sparks. [3]

Contents

Diepoxybutane is used as a chemical intermediate, as a curing agent for polymers, as a cross-linking agent for textiles, and as a preservative. [2]

Structure, reactivity, synthesis

Diepoxybutane occurs in several enantiomeric forms, including d,l-1,2:3,4-diepoxybutane, d-1,2:3,4-diepoxybutane, l-1,2:3,4-diepoxybutane, and meso-1,2:3,4-diepoxybutane. [3]

Diepoxybutane polymerizes in the presence of catalysts or when heated. These polymerization reactions can be violent. Compounds in epoxy groups react with acids, bases, and oxidizing and reducing agents. They react, possibly violently with water in the presence of acid and other catalysts. [4]

Metabolism/biotransformation

The metabolism/biotransformation of diepoxybutane occurs in several steps. The first biotransformation step is the cytochrome p450-mediated oxidation of 1,3-butadiene to form 3,4-epoxy-1-butene (EB). EB can be further metabolized into 1,2,3,4-diepoxybutane (DEB) or into 3-butene-1,2-diol (BDD). The hydrolysis of DEB by epoxide hydrolase or the oxidation of BDD by cytochrome p450 produces 3,4-epoxy-1,2-butanediol (EBD). [5]

Efficacy and side effects

Efficacy

Diepoxybutane is primarily used for research purposes. In research it is used as a curing agent for polymer resins, as a cross-linking agent for making synthetic textile fibers, [6] and as a chemical intermediate. There is a diepoxybutane test (DEB) for clinical investigation, used to screen for Fanconi anemia (FA) among patients with bone marrow failure syndromes. [7] FA is regarding chromosomal instability, which is why the cross-linking feature of DEB is useful for diagnosis.

Adverse effects

Carcinogenicity

Molecular mechanism of action

Diepoxybutane is the most potent active metabolite of the environmental chemical 1,3-butadiene (BD), which is widely used as an industrial chemical. BD is known to be a mutagen and human carcinogen and is capable of organ toxicity. The exposure, primarily via inhalation or dermal contact, of diepoxybutane to a human induces apoptosis in TK6 lymphoblasts via the upregulation of the tumor-suppressor p53 protein. [8]

Toxicity

Effect on humans

Diepoxybutane is reasonably anticipated to be a human carcinogen based on evidence of carcinogenicity in experimental animals. [6] Carcinogen is an agent capable of causing cancer. [9] Many scientists believe there is no safe level of exposure to a carcinogen. [10]

1,2:3,4-diepoxybutane can affect humans when breathed in, this agent can irritate the nose, throat and lungs causing coughing and/or shortness of breath (bronchitis). Longer exposure periods can cause build-up of fluid in the lungs (pulmonary edem)), a medical emergency, with severe shortness of breath. It may also damage the liver and kidneys. It should be handled as a carcinogen with extreme care. [10]

Effect on animals

It is experimentally shown that diepoxybutane can cause tumors in rodent species at several different tissue sites and by several different exposure routes. Dermal contact with diepoxybutane caused benign but also malignant skin tumors in mice. Injection of diepoxybutane into mice and rats caused lung tumors. Furthermore, the inhalation exposure to diepoxybutane caused benign Harderian-gland tumors in mice and also increased the area of benign or malignant tumors of the nasal cavity. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Carcinogen</span> Substance, radionuclide, or radiation directly involved in causing cancer

A carcinogen is any substance, radionuclide, or radiation that promotes carcinogenesis. This may be due to the ability to damage the genome or to the disruption of cellular metabolic processes. Several radioactive substances are considered carcinogens, but their carcinogenic activity is attributed to the radiation, for example gamma rays and alpha particles, which they emit. Common examples of non-radioactive carcinogens are inhaled asbestos, certain dioxins, and tobacco smoke. Although the public generally associates carcinogenicity with synthetic chemicals, it is equally likely to arise from both natural and synthetic substances. Carcinogens are not necessarily immediately toxic; thus, their effect can be insidious.

<span class="mw-page-title-main">Petrochemical</span> Chemical product derived from petroleum

Petrochemicals are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.

<span class="mw-page-title-main">Styrene</span> Chemical compound

Styrene is an organic compound with the chemical formula C6H5CH=CH2. Its structure consists of a vinyl group as substituent on benzene. Styrene a colorless, oily liquid, although aged samples can appear yellowish. The compound evaporates easily and has a sweet smell, although high concentrations have a less pleasant odor. Styrene is the precursor to polystyrene and several copolymers, and is typically made from benzene for this purpose. Approximately 25 million tonnes of styrene were produced in 2010, increasing to around 35 million tonnes by 2018.

<span class="mw-page-title-main">Vinyl chloride</span> Chemical compound

Vinyl chloride is an organochloride with the formula H2C=CHCl. It is also called vinyl chloride monomer (VCM) or chloroethene. This colorless compound is an important industrial chemical chiefly used to produce the polymer, poly(vinyl chloride) (PVC). Vinyl chloride monomer is among the top twenty largest petrochemicals (petroleum-derived chemicals) in world production. The United States remains the largest vinyl chloride manufacturing region because of its low-production-cost position in chlorine and ethylene raw materials. China is also a large manufacturer and one of the largest consumers of vinyl chloride. Vinyl chloride is a flammable gas that has a sweet odor and is carcinogenic. It can be formed in the environment when soil organisms break down chlorinated solvents. Vinyl chloride that is released by industries or formed by the breakdown of other chlorinated chemicals can enter the air and drinking water supplies. Vinyl chloride is a common contaminant found near landfills. Before the 1970s, vinyl chloride was used as an aerosol propellant and refrigerant.

Acrylonitrile is an organic compound with the formula CH2CHCN and the structure H2C=CH−C≡N. It is a colorless, volatile liquid although commercial samples can be yellow due to impurities. It has a pungent odor of garlic or onions. Its molecular structure consists of a vinyl group linked to a nitrile. It is an important monomer for the manufacture of useful plastics such as polyacrylonitrile. It is reactive and toxic at low doses. Acrylonitrile was first synthesized by the French chemist Charles Moureu (1863–1929) in 1893.

<span class="mw-page-title-main">Butadiene</span> Chemical compound

1,3-Butadiene is the organic compound with the formula CH2=CH-CH=CH2. It is a colorless gas that is easily condensed to a liquid. It is important industrially as a precursor to synthetic rubber. The molecule can be viewed as the union of two vinyl groups. It is the simplest conjugated diene.

Benzo(<i>a</i>)pyrene Carcinogenic compound found in smoke and soot

Benzo[a]pyrene (BaP or B[a]P) is a polycyclic aromatic hydrocarbon and the result of incomplete combustion of organic matter at temperatures between 300 °C (572 °F) and 600 °C (1,112 °F). The ubiquitous compound can be found in coal tar, tobacco smoke and many foods, especially grilled meats. The substance with the formula C20H12 is one of the benzopyrenes, formed by a benzene ring fused to pyrene. Its diol epoxide metabolites (more commonly known as BPDE) react with and bind to DNA, resulting in mutations and eventually cancer. It is listed as a Group 1 carcinogen by the IARC. In the 18th century a scrotal cancer of chimney sweepers, the chimney sweeps' carcinoma, was already known to be connected to soot.

<span class="mw-page-title-main">Methylcholanthrene</span> Chemical compound

Methylcholanthrene is a highly carcinogenic polycyclic aromatic hydrocarbon produced by burning organic compounds at very high temperatures. Methylcholanthrene is also known as 3-methylcholanthrene, 20-methylcholanthrene or the IUPAC name 3-methyl-1,2-dyhydrobenzo[j]aceanthrylene. The short notation often used is 3-MC or MCA. This compound forms pale yellow solid crystals when crystallized from benzene and ether. It has a melting point around 180 °C and its boiling point is around 280 °C at a pressure of 80 mmHg. Methylcholanthrene is used in laboratory studies of chemical carcinogenesis. It is an alkylated derivative of benz[a]anthracene and has a similar UV spectrum. The most common isomer is 3-methylcholanthrene, although the methyl group can occur in other places.

<span class="mw-page-title-main">Ethylbenzene</span> Hydrocarbon compound; precursor to styrene and polystyrene

Ethylbenzene is an organic compound with the formula C6H5CH2CH3. It is a highly flammable, colorless liquid with an odor similar to that of gasoline. This monocyclic aromatic hydrocarbon is important in the petrochemical industry as a reaction intermediate in the production of styrene, the precursor to polystyrene, a common plastic material. In 2012, more than 99% of ethylbenzene produced was consumed in the production of styrene.

<span class="mw-page-title-main">Chloroprene</span> Chemical compound

Chloroprene is the common name for 2-chlorobuta-1,3-diene (IUPAC name) with the chemical formula CH2=CCl−CH=CH2. Chloroprene is a colorless volatile liquid, almost exclusively used as a monomer for the production of the polymer polychloroprene, better known as neoprene, a type of synthetic rubber.

<span class="mw-page-title-main">Benzyl butyl phthalate</span> Chemical compound

Benzyl butyl phthalate (BBP) is an organic compound historically used a plasticizer, but which has now been largely phased out due to health concerns. It is a phthalate ester of containing benzyl alcohol, and n-butanol tail groups. Like most phthalates, BBP is non-volatile and remains liquid over a wide range of temperatures. It was mostly used as a plasticizer for PVC, but was also a common plasticizer for PVCA and PVB.

<span class="mw-page-title-main">Epichlorohydrin</span> Chemical compound

Epichlorohydrin is an organochlorine compound and an epoxide. Despite its name, it is not a halohydrin. It is a colorless liquid with a pungent, garlic-like odor, moderately soluble in water, but miscible with most polar organic solvents. It is a chiral molecule generally existing as a racemic mixture of right-handed and left-handed enantiomers. Epichlorohydrin is a highly reactive electrophilic compound and is used in the production of glycerol, plastics, epoxy glues and resins, epoxy diluents and elastomers.

<span class="mw-page-title-main">Glycidol</span> Chemical compound

Glycidol is an organic compound that contains both epoxide and alcohol functional groups. Being bifunctional, it has a variety of industrial uses. The compound is a slightly viscous liquid that is slightly unstable and is not often encountered in pure form.

<span class="mw-page-title-main">DNA adduct</span> Segment of DNA bound to a cancer-causing chemical

In molecular genetics, a DNA adduct is a segment of DNA bound to a cancer-causing chemical. This process could lead to the development of cancerous cells, or carcinogenesis. DNA adducts in scientific experiments are used as biomarkers of exposure. They are especially useful in quantifying an organism's exposure to a carcinogen. The presence of such an adduct indicates prior exposure to a potential carcinogen, but it does not necessarily indicate the presence of cancer in the subject animal.

Benzo(<i>j</i>)fluoranthene Chemical compound

Benzo[j]fluoranthene (BjF) is an organic compound with the chemical formula C20H12. Classified as a polycyclic aromatic hydrocarbon (PAH), it is a colourless solid that is poorly soluble in most solvents. Impure samples can appear off white. Closely related isomeric compounds include benzo[a]fluoranthene (BaF), bendo[b]fluoranthene (BbF), benzo[e]fluoranthene (BeF), and benzo[k]fluoranthene (BkF). BjF is present in fossil fuels and is released during incomplete combustion of organic matter. It has been traced in the smoke of cigarettes, exhaust from gasoline engines, emissions from the combustion of various types of coal and emissions from oil heating, as well as an impurity in some oils such as soybean oil.

<span class="mw-page-title-main">Bisphenol A diglycidyl ether</span> Chemical compound

Bisphenol A diglycidyl ether is an organic compound and is a liquid epoxy resin. The compound is a colorless viscous liquid. It is a key component of many epoxy resin formulations. Addition of further Bisphenol A and a catalyst and heat can produce Bisphenol A glycidyl ether epoxy resins of higher molecular weight that are solid.

Methacrylonitrile, MeAN in short, is a chemical compound that is an unsaturated aliphatic nitrile, widely used in the preparation of homopolymers, copolymers, elastomers, and plastics and as a chemical intermediate in the preparation of acids, amides, amines, esters, and other nitriles. MeAN is also used as a replacement for acrylonitrile in the manufacture of an acrylonitrile/butadiene/styrene-like polymer. It is a clear and colorless liquid, that has a bitter almond smell.

Toxicodynamics, termed pharmacodynamics in pharmacology, describes the dynamic interactions of a toxicant with a biological target and its biological effects. A biological target, also known as the site of action, can be binding proteins, ion channels, DNA, or a variety of other receptors. When a toxicant enters an organism, it can interact with these receptors and produce structural or functional alterations. The mechanism of action of the toxicant, as determined by a toxicant’s chemical properties, will determine what receptors are targeted and the overall toxic effect at the cellular level and organismal level.

<span class="mw-page-title-main">Vinylcyclohexene dioxide</span> Chemical compound

4-Vinylcyclohexene dioxide (VCD) is an organic compound that contains two epoxide functional groups. It is industrially used as a crosslinking agent for the production of epoxy resins. It is a colourless liquid. It is an intermediate for synthesis of organic compounds.

Benzo(<i>c</i>)fluorene Chemical compound

Benzo[c]fluorene is a polycyclic aromatic hydrocarbon (PAH) with mutagenic activity. It is a component of coal tar, cigarette smoke and smog and thought to be a major contributor to its carcinogenic properties. The mutagenicity of benzo[c]fluorene is mainly attributed to formation of metabolites that are reactive and capable of forming DNA adducts. According to the KEGG it is a group 3 carcinogen. Other names for benzo[c]fluorene are 7H-benzo[c]fluorene, 3,4-benzofluorene, and NSC 89264.

References

  1. 1 2 3 4 5 Record in the GESTIS Substance Database of the Institute for Occupational Safety and Health
  2. 1 2 Diepoxybutane Report on Carcinogens, Twelfth Edition (2011)
  3. 1 2 3 4 "National Toxicology Program: 15th Report on Carcinogens". National Toxicology Program (NTP). Retrieved 2023-03-19.
  4. 1 2 "DIEPOXYBUTANE | CAMEO Chemicals | NOAA". cameochemicals.noaa.gov. Retrieved 2023-03-19.
  5. Wen, Ying; Zhang, Pan-Pan; An, Jing; Yu, Ying-Xin; Wu, Ming-Hong; Sheng, Guo-Ying; Fu, Jia-Mo; Zhang, Xin-Yu (2011-11-01). "Diepoxybutane induces the formation of DNA–DNA rather than DNA–protein cross-links, and single-strand breaks and alkali-labile sites in human hepatocyte L02 cells". Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 716 (1): 84–91. doi:10.1016/j.mrfmmm.2011.08.007. ISSN   0027-5107.
  6. 1 2 3 PubChem. "2,2'-Bioxirane". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-03-19.
  7. "Diepoxybutane Test". www.datadictionary.nhs.uk. Retrieved 2023-03-19.
  8. Ewunkem, Akamu J.; Deve, Maya; Harrison, Scott H.; Muganda, Perpetua M. (March 2020). "Diepoxybutane induces the expression of a novel p53‐target gene XCL1 that mediates apoptosis in exposed human lymphoblasts". Journal of Biochemical and Molecular Toxicology. 34 (3). doi:10.1002/jbt.22446. ISSN   1095-6670. PMC   7060116 . PMID   31953984.
  9. "Carcinogen". Genome.gov. Retrieved 2023-03-19.
  10. 1 2 New Jersey Department of Health and Senior Services (2000). Hazardous Substances Fact Sheet. 984-2202 (609). Retrieved 2023-03-20. https://nj.gov/health/eoh/rtkweb/documents/fs/0685.pdf.