Differential rotation

Last updated

Differential rotation is seen when different parts of a rotating object move with different angular velocities (or rates of rotation) at different latitudes and/or depths of the body and/or in time. This indicates that the object is not rigid. In fluid objects, such as accretion disks, this leads to shearing. Galaxies and protostars usually show differential rotation; examples in the Solar System include the Sun, Jupiter and Saturn. [1]

Contents

Around the year 1610, Galileo Galilei observed sunspots and calculated the rotation of the Sun. In 1630, Christoph Scheiner reported that the Sun had different rotational periods at the poles and at the equator, in good agreement with modern values. [ citation needed ]

Cause

Stars and planets rotate in the first place because conservation of angular momentum turns random drifting of parts of the molecular cloud that they form from into rotating motion as they coalesce. Given this average rotation of the whole body, internal differential rotation is caused by convection in stars which is a movement of mass, due to steep temperature gradients from the core outwards. This mass carries a portion of the star's angular momentum, thus redistributing the angular velocity, possibly even far enough out for the star to lose angular velocity in stellar winds. Differential rotation thus depends on temperature differences in adjacent regions.

Measurement

There are many ways to measure and calculate differential rotation in stars to see if different latitudes have different angular velocities. The most obvious is tracking spots on the stellar surface.

By doing helioseismological measurements of solar "p-modes" it is possible to deduce the differential rotation. The Sun has very many acoustic modes that oscillate in the interior simultaneously, and the inversion of their frequencies can yield the rotation of the solar interior. This varies with both depth and (especially) latitude.

The broadened shapes of absorption lines in the optical spectrum depend on vrotsin(i), where i is the angle between the line of sight and the rotation axis, permitting the study of the rotational velocity's line-of-sight component vrot. This is calculated from Fourier transforms of the line shapes, using equation (2) below for vrot at the equator and poles. See also plot 2. Solar differential rotation is also seen in magnetograms, images showing the strength and location of solar magnetic fields.

It may be possible to measure the differential of stars that regularly emit flares of radio emission. Using 7 years of observations of the M9 ultracool dwarf TVLM 513-46546, astronomers were able to measure subtle changes in the arrival times of the radio waves. These measurements demonstrate that the radio waves can arrive 1–2 seconds sooner or later in a systematic fashion over a number of years. On the Sun, active regions are common sources of radio flares. The researchers concluded that this effect was best explained by active regions emerging and disappearing at different latitudes, such as occurs during the solar sunspot cycle. [2]

Effects

Gradients in angular rotation caused by angular momentum redistribution within the convective layers of a star are expected to be a main driver for generating the large-scale magnetic field, through magneto-hydrodynamical (dynamo) mechanisms in the outer envelopes. The interface between these two regions is where angular rotation gradients are strongest and thus where dynamo processes are expected to be most efficient.

The inner differential rotation is one part of the mixing processes in stars, mixing the materials and the heat/energy of the stars.

Differential rotation affects stellar optical absorption-line spectra through line broadening caused by lines being differently Doppler-shifted across the stellar surface.

Solar differential rotation causes shear at the so-called tachocline. This is a region where rotation changes from differential in the convection zone to nearly solid-body rotation in the interior, at 0.71 solar radii from the center.

Surface level

For observed sunspots, the differential rotation can be calculated as:

where is the rotation rate at the equator, and is the difference in angular velocity between pole and equator, called the strength of the rotational shear. is the heliographic latitude, measured from the equator.

Examples

Sun

Internal rotation in the Sun, showing differential rotation in the outer convective region and almost uniform rotation in the central radiative region. Tachocline.svg
Internal rotation in the Sun, showing differential rotation in the outer convective region and almost uniform rotation in the central radiative region.

On the Sun, the study of oscillations revealed that rotation is roughly constant within the whole radiative interior and variable with radius and latitude within the convective envelope. The Sun has an equatorial rotation speed of ~2 km/s; its differential rotation implies that the angular velocity decreases with increased latitude. The poles make one rotation every 34.3 days and the equator every 25.05 days, as measured relative to distant stars (sidereal rotation).

The highly turbulent nature of solar convection and anisotropies induced by rotation complicate the dynamics of modeling. Molecular dissipation scales on the Sun are at least six orders of magnitude smaller than the depth of the convective envelope. A direct numerical simulation of solar convection would have to resolve this entire range of scales in each of the three dimensions. Consequently, all solar differential rotation models must involve some approximations regarding momentum and heat transport by turbulent motions that are not explicitly computed. Thus, modeling approaches can be classified as either mean-field models or large-eddy simulations according to the approximations.

Disk galaxies

Disk galaxies do not rotate like solid bodies, but rather rotate differentially. The rotation speed as a function of radius is called a rotation curve, and is often interpreted as a measurement of the mass profile of a galaxy, as:

where

See also

Related Research Articles

<span class="mw-page-title-main">Angular momentum</span> Conserved physical quantity; rotational analogue of linear momentum

In physics, angular momentum is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, flying discs, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.

<span class="mw-page-title-main">Centripetal force</span> Force directed to the center of rotation

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

<span class="mw-page-title-main">Coriolis force</span> Apparent force in a rotating reference frame

In physics, the Coriolis force is an inertial force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term Coriolis force began to be used in connection with meteorology.

<span class="mw-page-title-main">Precession</span> Periodic change in the direction of a rotation axis

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called nutation. In physics, there are two types of precession: torque-free and torque-induced.

<span class="mw-page-title-main">Gyrocompass</span> Type of non-magnetic compass based on the rotation of the Earth

A gyrocompass is a type of non-magnetic compass which is based on a fast-spinning disc and the rotation of the Earth to find geographical direction automatically. A gyrocompass makes use of one of the seven fundamental ways to determine the heading of a vehicle. A gyroscope is an essential component of a gyrocompass, but they are different devices; a gyrocompass is built to use the effect of gyroscopic precession, which is a distinctive aspect of the general gyroscopic effect. Gyrocompasses, such as the fibre optic gyrocompass are widely used to provide a heading for navigation on ships. This is because they have two significant advantages over magnetic compasses:

<span class="mw-page-title-main">Galactic coordinate system</span> Celestial coordinate system in spherical coordinates, with the Sun as its center

The galactic coordinate system is a celestial coordinate system in spherical coordinates, with the Sun as its center, the primary direction aligned with the approximate center of the Milky Way Galaxy, and the fundamental plane parallel to an approximation of the galactic plane but offset to its north. It uses the right-handed convention, meaning that coordinates are positive toward the north and toward the east in the fundamental plane.

<span class="mw-page-title-main">Angular velocity</span> Direction and rate of rotation

In physics, angular velocity, also known as angular frequency vector, is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates around an axis of rotation and how fast the axis itself changes direction.

<span class="mw-page-title-main">Equatorial bulge</span> Outward bulge around a planets equator due to its rotation

An equatorial bulge is a difference between the equatorial and polar diameters of a planet, due to the centrifugal force exerted by the rotation about the body's axis. A rotating body tends to form an oblate spheroid rather than a sphere.

<span class="mw-page-title-main">Asteroseismology</span> Study of oscillations in stars

Asteroseismology is the study of oscillations in stars. Stars have many resonant modes and frequencies, and the path of sound waves passing through a star depends on the speed of sound, which in turn depends on local temperature and chemical composition. Because the resulting oscillation modes are sensitive to different parts of the star, they inform astronomers about the internal structure of the star, which is otherwise not directly possible from overall properties like brightness and surface temperature.

Helioseismology, a term coined by Douglas Gough, is the study of the structure and dynamics of the Sun through its oscillations. These are principally caused by sound waves that are continuously driven and damped by convection near the Sun's surface. It is similar to geoseismology, or asteroseismology, which are respectively the studies of the Earth or stars through their oscillations. While the Sun's oscillations were first detected in the early 1960s, it was only in the mid-1970s that it was realized that the oscillations propagated throughout the Sun and could allow scientists to study the Sun's deep interior. The modern field is separated into global helioseismology, which studies the Sun's resonant modes directly, and local helioseismology, which studies the propagation of the component waves near the Sun's surface.

<span class="mw-page-title-main">Proper time</span> Elapsed time between two events as measured by a clock that passes through both events

In relativity, proper time along a timelike world line is defined as the time as measured by a clock following that line. The proper time interval between two events on a world line is the change in proper time, which is independent of coordinates, and is a Lorentz scalar. The interval is the quantity of interest, since proper time itself is fixed only up to an arbitrary additive constant, namely the setting of the clock at some event along the world line.

<span class="mw-page-title-main">Differential wheeled robot</span>

A differential wheeled robot is a mobile robot whose movement is based on two separately driven wheels placed on either side of the robot body. It can thus change its direction by varying the relative rate of rotation of its wheels and hence does not require an additional steering motion. Robots with such a drive typically have one or more castor wheels to prevent the vehicle from tilting.

<span class="mw-page-title-main">Solar rotation</span> Differential rotation of the Sun

Solar rotation varies with latitude. The Sun is not a solid body, but is composed of a gaseous plasma. Different latitudes rotate at different periods. The source of this differential rotation is an area of current research in solar astronomy. The rate of surface rotation is observed to be the fastest at the equator and to decrease as latitude increases. The solar rotation period is 24.47 days at the equator and almost 38 days at the poles. The average rotation is 28 days.

<span class="mw-page-title-main">Rotation around a fixed axis</span> Type of motion

Rotation around a fixed axis or axial rotation is a special case of rotational motion around an axis of rotation fixed, stationary, or static in three-dimensional space. This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will result.

The Eötvös effect is the change in measured Earth's gravity caused by the change in centrifugal acceleration resulting from eastbound or westbound velocity. When moving eastbound, the object's angular velocity is increased, and thus the centrifugal force also increases, causing a perceived reduction in gravitational force.

The Oort constants and are empirically derived parameters that characterize the local rotational properties of our galaxy, the Milky Way, in the following manner:

<span class="mw-page-title-main">Stellar rotation</span> Angular motion of a star about its axis

Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface.

The magnetorotational instability (MRI) is a fluid instability that causes an accretion disk orbiting a massive central object to become turbulent. It arises when the angular velocity of a conducting fluid in a magnetic field decreases as the distance from the rotation center increases. It is also known as the Velikhov–Chandrasekhar instability or Balbus–Hawley instability in the literature, not to be confused with the electrothermal Velikhov instability. The MRI is of particular relevance in astrophysics where it is an important part of the dynamics in accretion disks.

In meteorology, absolute angular momentum is the angular momentum in an 'absolute' coordinate system.

Astronomical nutation is a phenomenon which causes the orientation of the axis of rotation of a spinning astronomical object to vary over time. It is caused by the gravitational forces of other nearby bodies acting upon the spinning object. Although they are caused by the same effect operating over different timescales, astronomers usually make a distinction between precession, which is a steady long-term change in the axis of rotation, and nutation, which is the combined effect of similar shorter-term variations.

References

  1. Hathaway, David H. (July 1986). "Magnetic reversals of Jupiter and Saturn". Icarus. 67 (1): 88–95. Bibcode:1986Icar...67...88H. doi:10.1016/0019-1035(86)90177-6 . Retrieved 25 April 2024.
  2. Wolszczan, A.; Route, M. (10 June 2014). "Timing Analysis of the Periodic Radio and Optical Brightness Variations of the Ultracool Dwarf, TVLM 513-46546". The Astrophysical Journal. 788 (1): 23. arXiv: 1404.4682 . Bibcode:2014ApJ...788...23W. doi:10.1088/0004-637X/788/1/23. S2CID   119114679.

Further reading