Diffusion tube

Last updated

A diffusion tube is a scientific device that passively samples the concentration of one or more gases in the air, commonly used to monitor average air pollution levels over a period ranging from days to about a month. [1] Diffusion tubes are widely used by local authorities for monitoring air quality in urban areas, [2] in citizen science pollution-monitoring projects carried out by community groups and schools, [3] [4] and in indoor environments such as mines [5] and museums. [6]

Contents

Construction and operation


A typical diffusion tube attached, by a cable tie, to a drainpipe. The bottom end is open to the atmosphere. Pollution is captured by a chemical inside the red cap at the top. AirQualityLondon1.jpg
A typical diffusion tube attached, by a cable tie, to a drainpipe. The bottom end is open to the atmosphere. Pollution is captured by a chemical inside the red cap at the top.

A diffusion tube consists of a small, hollow, usually transparent, acrylic or polypropylene plastic tube, roughly 70mm long, with a cap at each end. One of the caps (coloured white) is either completely removed to activate the tube (in the case of nitrogen dioxide sampling) or contains a filter allowing in just the gas being studied. The other cap (a different colour) contains metal mesh discs coated with a chemical reagent that absorbs the gas being studied as it enters the tube. [7] Tubes that work this way are also known as Palmes tubes after their inventor, American chemist Edward Palmes, [8] [9] who described using such a tube as a personal air quality sensor in 1976. [10]

During operation, the tube is opened and vertically fastened with cable ties to something like a lamp-post or road sign, with the open end facing down, and the closed, coloured cap at the top. The gas being monitored, which is at a higher concentration in the atmosphere, diffuses into the bottom of the tube and is quickly absorbed by the chemical cap. Since it's absorbed, the process of diffusion continues. After a fixed period of time (typically from two weeks to a month), the tube is sealed up and sent away to a laboratory for analysis. The atmospheric concentration of the gas being studied can be calculated using the amount captured and Fick's laws of diffusion. [11]

Diffusion tubes can be used to sample various different gases, including oxides of nitrogen (nitrogen dioxide and nitric oxide), sulphur dioxide, ammonia, and ozone. Although tubes sampling these gases all work through the same process of molecular diffusion, there are important differences. Nitrogen dioxide tubes use triethanolamine, TEA, as the absorbing (reagent) chemical, for example, while hydrogen sulphide tubes are opaque (rather than transparent) to prevent ultraviolet light from degrading the chemicals inside. Some types of tube can sample multiple gases at the same time.

Advantages and disadvantages

Diffusion tubes are reasonably accurate, relatively cheap, easy to use, extremely compact, passive (they need no power source), and have a fairly long shelf life; with careful positioning, they can be deployed more or less anywhere, indoors or outdoors. [6] [12] They give a reasonable indication of the long-term, average concentration of a pollutant gas, such as nitrogen dioxide, and they make it easy to compare average pollution levels in different places or at different times. Often, a series of tubes are mounted in exactly the same place for consecutive months of the year to enable longer-term comparisons of pollution levels. It's also common for local authorities to mount a number of tubes in different places over the same time period so pollution hotspots in towns and cities can be identified.

Since diffusion tubes are designed to be left in place for days or weeks at a time, they don't indicate shorter-term fluctuations of the pollutant being studied, such as the rising and falling levels of gas during the day, the difference between one day and the next or between weekdays and weekends, or the number of times guideline pollution levels are exceeded while they're in place. They're also much less accurate than the highly sensitive, automated monitoring equipment used in roadside pollution monitoring cabins. Sources of inaccuracy include air turbulence (caused by things like wind movements or air conditioners), pollution from building ventilation systems, ultraviolet light (theoretically absorbed by the plastic tube), and other pollutants. [7]

Related Research Articles

<span class="mw-page-title-main">Pollutant</span> Substance or energy damaging to the environment

A pollutant or novel entity is a substance or energy introduced into the environment that has undesired effects, or adversely affects the usefulness of a resource. These can be both naturally forming or anthropogenic in origin. Pollutants result in environmental pollution or become public health concerns when they reach a concentration high enough to have significant negative impacts.

<span class="mw-page-title-main">Ground-level ozone</span>

Ground-level ozone (O3), also known as surface-level ozone and tropospheric ozone, is a trace gas in the troposphere (the lowest level of the Earth's atmosphere), with an average concentration of 20–30 parts per billion by volume (ppbv), with close to 100 ppbv in polluted areas. Ozone is also an important constituent of the stratosphere, where the ozone layer (2 to 8 parts per million ozone) exists which is located between 10 and 50 kilometers above the Earth's surface. The troposphere extends from the ground up to a variable height of approximately 14 kilometers above sea level. Ozone is least concentrated in the ground layer (or planetary boundary layer) of the troposphere. Ground-level or tropospheric ozone is created by chemical reactions between NOx gases (oxides of nitrogen produced by combustion) and volatile organic compounds (VOCs). The combination of these chemicals in the presence of sunlight form ozone. Its concentration increases as height above sea level increases, with a maximum concentration at the tropopause. About 90% of total ozone in the atmosphere is in the stratosphere, and 10% is in the troposphere. Although tropospheric ozone is less concentrated than stratospheric ozone, it is of concern because of its health effects. Ozone in the troposphere is considered a greenhouse gas, and may contribute to global warming.

<span class="mw-page-title-main">Indoor air quality</span> Air quality within and around buildings and structures

Indoor air quality (IAQ) is the air quality within and around buildings and structures. IAQ is known to affect the health, comfort, and well-being of building occupants. Poor indoor air quality has been linked to sick building syndrome, reduced productivity, and impaired learning in schools. Common pollutants of indoor air include: Secondhand tobacco smoke, air pollutants from indoor combustion, radon, molds and other allergens, carbon monoxide, volatile organic compounds, legionella and other bacteria, asbestos fibers, carbon dioxide, ozone and particulates. Source control, filtration, and the use of ventilation to dilute contaminants are the primary methods for improving indoor air quality in most buildings.

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources: sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution is either surface water pollution or groundwater pollution. This form of pollution can lead to many problems, such as the degradation of aquatic ecosystems or spreading water-borne diseases when people use polluted water for drinking or irrigation. Another problem is that water pollution reduces the ecosystem services that the water resource would otherwise provide.

<span class="mw-page-title-main">National Ambient Air Quality Standards</span> US EPA limits on certain air pollutants

The U.S. National Ambient Air Quality Standards are limits on atmospheric concentration of six pollutants that cause smog, acid rain, and other health hazards. Established by the United States Environmental Protection Agency (EPA) under authority of the Clean Air Act, NAAQS is applied for outdoor air throughout the country.

<span class="mw-page-title-main">Air quality index</span> Measure of air pollution

An air quality index (AQI) is used by government agencies to communicate to the public how polluted the air currently is or how polluted it is forecast to become. AQI information is obtained by averaging readings from an air quality sensor, which can increase due to vehicle traffic, forest fires, or anything that can increase air pollution. Pollutants tested include particulates, ozone, nitrogen dioxide, carbon monoxide, sulphur dioxide, among others.

<span class="mw-page-title-main">Atmospheric dispersion modeling</span> Mathematical simulation of how air pollutants disperse in the ambient atmosphere

Atmospheric dispersion modeling is the mathematical simulation of how air pollutants disperse in the ambient atmosphere. It is performed with computer programs that include algorithms to solve the mathematical equations that govern the pollutant dispersion. The dispersion models are used to estimate the downwind ambient concentration of air pollutants or toxins emitted from sources such as industrial plants, vehicular traffic or accidental chemical releases. They can also be used to predict future concentrations under specific scenarios. Therefore, they are the dominant type of model used in air quality policy making. They are most useful for pollutants that are dispersed over large distances and that may react in the atmosphere. For pollutants that have a very high spatio-temporal variability and for epidemiological studies statistical land-use regression models are also used.

<span class="mw-page-title-main">Air Pollution Index</span> Air quality measurement in Malaysia

The Air Pollution Index is a simple and generalized way to describe the air quality, which is used in Malaysia. It is calculated from several sets of air pollution data and was formerly used in mainland China and Hong Kong. In mainland China the API was replaced by an updated air quality index in early 2012 and on 30 December 2013 Hong Kong moved to a health based index.

An emission inventory is an accounting of the amount of pollutants discharged into the atmosphere. An emission inventory usually contains the total emissions for one or more specific greenhouse gases or air pollutants, originating from all source categories in a certain geographical area and within a specified time span, usually a specific year.

In environmental science, air pollution dispersion is the distribution of air pollution into the atmosphere. Air pollution is the introduction of particulates, biological molecules, or other harmful materials into Earth's atmosphere, causing disease, death to humans, damage to other living organisms such as food crops, and the natural or built environment. Air pollution may come from anthropogenic or natural sources. Dispersion refers to what happens to the pollution during and after its introduction; understanding this may help in identifying and controlling it.

<span class="mw-page-title-main">Air pollution</span> Presence of dangerous substances in the atmosphere

Air pollution is the contamination of air due to the presence of substances in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. It is also the contamination of indoor or outdoor surrounding either by chemical activities, physical or biological agents that alters the natural features of the atmosphere. There are many different types of air pollutants, such as gases, particulates, and biological molecules. Air pollution can cause diseases, allergies, and even death to humans; it can also cause harm to other living organisms such as animals and food crops, and may damage the natural environment or built environment. Air pollution can be caused by both human activities and natural phenomena.

<span class="mw-page-title-main">Environmental monitoring</span> Monitoring of the quality of the environment

Environmental monitoring describes the processes and activities that need to take place to characterize and monitor the quality of the environment. Environmental monitoring is used in the preparation of environmental impact assessments, as well as in many circumstances in which human activities carry a risk of harmful effects on the natural environment. All monitoring strategies and programs have reasons and justifications which are often designed to establish the current status of an environment or to establish trends in environmental parameters. In all cases, the results of monitoring will be reviewed, analyzed statistically, and published. The design of a monitoring program must therefore have regard to the final use of the data before monitoring starts.

<span class="mw-page-title-main">Assimilative capacity</span>

Assimilative capacity is the ability for pollutants to be absorbed by an environment without detrimental effects to the environment or those who use of it. Natural absorption into an environment is achieved through dilution, dispersion and removal through chemical or biological processes. The term assimilative capacity has been used interchangeably with environmental capacity, receiving capacity and absorptive capacity. It is used as a measurement perimeter in hydrology, meteorology and pedology for a variety of environments examples consist of: lakes, rivers, oceans, cities and soils. Assimilative capacity is a subjective measurement that is quantified by governments and institutions such as Environmental Protection Agency (EPA) of environments into guidelines. Using assimilative capacity as a guideline can help the allocation of resources while reducing the impact on organisms in an environment. This concept is paired with carrying capacity in order to facilitate sustainable development of city regions. Assimilative capacity has been critiqued as to its effectiveness due to ambiguity in its definition that can confuses readers and false assumptions that a small amount of pollutants has no harmful effect on an environment.

Inhalation is a major route of exposure that occurs when an individual breathes in polluted air which enters the respiratory tract. Identification of the pollutant uptake by the respiratory system can determine how the resulting exposure contributes to the dose. In this way, the mechanism of pollutant uptake by the respiratory system can be used to predict potential health impacts within the human population.

Analytical thermal desorption, known within the analytical chemistry community simply as "thermal desorption" (TD), is a technique that concentrates volatile organic compounds (VOCs) in gas streams prior to injection into a gas chromatograph (GC). It can be used to lower the detection limits of GC methods, and can improve chromatographic performance by reducing peak widths.

Air pollution measurement is the process of collecting and measuring the components of air pollution, notably gases and particulates. The earliest devices used to measure pollution include rain gauges, Ringelmann charts for measuring smoke, and simple soot and dust collectors known as deposit gauges. Modern air pollution measurement is largely automated and carried out using many different devices and techniques. These range from simple absorbent test tubes known as diffusion tubes through to highly sophisticated chemical and physical sensors that give almost real-time pollution measurements, which are used to generate air quality indexes.

Environmental issues in Toronto encompasses all those concerns and opportunities presented by the environment of Toronto. Many are harmful effects, such as the pollution of air and water, while others are factors influenced by urban infrastructures such as highways and public transportation services. As a result of the city's large population, substantial waste is produced annually.

<span class="mw-page-title-main">Passive sampling</span>

Passive sampling is an environmental monitoring technique involving the use of a collecting medium, such as a man-made device or biological organism, to accumulate chemical pollutants in the environment over time. This is in contrast to grab sampling, which involves taking a sample directly from the media of interest at one point in time. In passive sampling, average chemical concentrations are calculated over a device's deployment time, which avoids the need to visit a sampling site multiple times to collect multiple representative samples. Currently, passive samplers have been developed and deployed to detect toxic metals, pesticides, pharmaceuticals, radionuclides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and other organic compounds in water, while some passive samplers can detect hazardous substances in the air.

<span class="mw-page-title-main">Ammonia pollution</span> Chemical contamination

Ammonia pollution is pollution by the chemical ammonia (NH3) – a compound of nitrogen and hydrogen which is a byproduct of agriculture and industry. Common forms include air pollution by the ammonia gas emitted by rotting agricultural slurry and fertilizer factories while natural sources include the burning coal mines of Jharia, the caustic Lake Natron and the guano of seabird colonies. Gaseous ammonia reacts with other pollutants in the air to form fine particles of ammonium salts, which affect human breathing. Ammonia gas can also affect the chemistry of the soil on which it settles and will, for example, degrade the conditions required by the sphagnum moss and heathers of peatland.

Particulate pollution is pollution of an environment that consists of particles suspended in some medium. There are three primary forms: atmospheric particulate matter, marine debris, and space debris. Some particles are released directly from a specific source, while others form in chemical reactions in the atmosphere. Particulate pollution can be derived from either natural sources or anthropogenic processes.

References

  1. Nash, David G.; Leith, David (February 2010). "Use of Passive Diffusion Tubes to Monitor Air Pollutants". Journal of the Air & Waste Management Association. 60 (2): 204–209. doi:10.3155/1047-3289.60.2.204. eISSN   2162-2906. ISSN   1096-2247. PMC   2838214 . PMID   20222533.
  2. "Local Air Quality Management Technical Guidance (TG16)". Local Air Quality Management. UK Government Department for Environment and Rural Affairs. April 2021. Retrieved 28 February 2022.
  3. "Using Diffusion Tubes". Care4Air. Sheffield City Council. Retrieved 28 February 2022.
  4. "Diffusion Tubes". LoveCleanAir South London. Retrieved 28 February 2022.
  5. Pederson, Jerald, ed. (1985). Bureau of Mines Research. U.S. Department of the Interior. p. 13.
  6. 1 2 Grzywacz, Cecily (2006). Monitoring for Gaseous Pollutants in Museum Environments. Getty Conservation Institute. p. 48. ISBN   9780892368518.
  7. 1 2 Targa, Jaume; Loader, Alison. "Diffusion Tubes for Ambient NO2 Monitoring: Practical Guidance for Laboratories and Users" (PDF). Local Air Quality Management. UK Government Department for Environment and Rural Affairs. Retrieved 28 February 2022.
  8. Brooks, Bradford; Davis, William (1992). Understanding Indoor Air Quality. CRC-Press. p. 110. ISBN   9780849388460.
  9. Sella, Andrea (1 November 2016). "Palmes' Tube". Chemistry World. Royal Society of Chemistry.
  10. Palmes, E; Gunnison, A; DiMattio, J; Tomczyk, C (1976). "Personal sampler for nitrogen dioxide". American Industrial Hygiene Association Journal. 37 (10): 570–577. doi:10.1080/0002889768507522. PMID   983946 . Retrieved 28 February 2022.
  11. Plaisance, H (2004). "Response of a Palmes tube at various fluctuations of concentration in ambient air". Atmospheric Environment. 38 (36): 6115–6120. Bibcode:2004AtmEn..38.6115P. doi:10.1016/j.atmosenv.2004.08.011. ISSN   1352-2310 . Retrieved 28 February 2022.
  12. Boleij, J; Lebret, E; Hoek, F; Noy, D; Brunekreef, B (1967). "The use of Palmes diffusion tubes for measuring NO2 in homes". Atmospheric Environment. 20 (3): 597–600. doi:10.1016/0004-6981(86)90103-4. ISSN   0004-6981 . Retrieved 28 February 2022.