Digigraphics

Last updated

Digigraphics was one of the first graphical computer aided design systems to go on sale. Originally developed at Itek on the PDP-1 as EDM (Electronic Drafting Machine), the efforts were purchased by Control Data Corporation and ported to their machines, along with a new graphics terminal to support it. Systems cost almost $500,000 and supported only a few users at a time, so in spite of a number of advantages it was not cost competitive with traditional manual methods and only a few systems were sold.

Contents

History

Genesis at Itek

MIT's Lincoln Laboratory developed the first high-speed computer in the form of Whirlwind, as part of the US Air Force's SAGE project. SAGE not only required high-speed computers, but also graphical displays and light pens to operate them in real-time. The ideas developed during the SAGE program "leaked out" into the industry as SAGE wound down and its many members moved on to other projects. Ken Olsen formed Digital Equipment Corporation (DEC) and took many of the early SAGE programmers with them, Jack Gilmore and Charles Adams started Charles W. Adams Associates, one of the first programming companies, and Norm Taylor went to work at Itek, who was attempting to build a computerized machine for retrieving photographs from a large library.

In 1959 Gilmore at Adams met with Taylor at Itek and proposed the idea of jointly developing a computer system for engineering design. Taylor convinced Itek's management to fund development, finally receiving the go-ahead in August 1960, retaining Adams Associates to write the software [1] The natural choice for the host computer was DEC's newly released PDP-1. The PDP-1 had many of the same features as the earlier Lincoln Lab machines, including an optional vector display and light pen support. The PDP-1 was based on an 18-bit word (1/2 the common mainframe 36-bits), had a 4,000-word core memory, and ran at about 0.1 MIPS.

Between mid-1960 and June 1961, the basic hardware was assembled, initially at Digital's facility in Maynard, and later at Itek. Itek's PDP-1 was the second one to be delivered to a customer, [2] the first being to MIT's Project MAC. A new 25 inch tube was used, larger than the PDP-1's standard 16 inch Type 30, but packaged in a similar hexagonal case. Input was via a combination of light pen for pointing, and the PDP-1's front panel switches for commands. An overlay was used on the front panel to indicate the special functions, and another on the display for labeling outputs. [3]

Normally the PDP-1 display was driven in software, so as the complexity of the drawings increased, performance decreased. Itek addressed this problem by developing a "display processor" that would offload the task of refreshing the screen so the computer could be used solely for processing.Vector information was stored on the outer tracks of a 36 inch hard disk supplied by Telex. Storing data only on the outside meant the linear speed was higher, providing faster throughput and allowing the system to generate 30 images a second from the data. Vectors were stored with 4-bit points to increase performance. [4] In total, the disk system stored about 500,000 18-bit words, with about 20,000 bytes of vector data being used.

On the market

The basic system was assembled and operational by early 1962, when Itek started actively marketing it as EDM. The system developed intense interest, and was even featured in a Time magazine article:

The operator's designs pass through the console into an inexpensive computer, which solves the problems and stores the answers in its memory banks in both digitalized form and on microfilm. By simply pressing buttons and sketching with the light pen, the engineer may enter into a running dialogue with an EDM, recall any of his earlier drawings to the screen in a millisecond and alter its lines and curves at will. [5]

The US Air Force purchased one system for use at the Lincoln Labs on the PDP-1 that drove their Experimental Dynamic Processor, or DX-1. This version used a magnetic drum in place of the disk, its increased performance allowing more data to be stored before performance became an issue. This version used 6-bit words for locations instead of the prototype's 4-bit words, increasing resolution and allowing support for 2,000 inch documents instead of 800. [6]

EDM was not the only CAD system being developed at the time. General Motors started developing a similar system in 1959, and IBM joined the effort in 1960. In spite of starting at about the same time, Digigraphics beat their DAC-1 to market by the better part of a year. [7]

Sale to Control Data

EDM was pitched to Itek while its president Richard Leghorn was in the midst of a buying spree. The company was publicly involved in the computer industry (its name was phonetically shortened from "information technology") but in reality supplied a single product, the cameras for the CIA's CORONA spy satellites. As a number of the company's acquisitions failed, Leghorn was removed from control of the company in May 1962 and replaced by Franklin Lindsay. [8] Lindsay quickly shed most of Leghorn's acquisitions, including EDM.

The system was picked up by Control Data Corporation (CDC), who were in the process of introducing a number of computer systems. Adams Associates won a contract to port the system to the CDC 3200 while CDC created a new version of the terminal, the CDC 274, controlled by the new CDC 1700 computer. Versions of the basic system were later ported to other CDC computers, including the 6000 family, which could support several 274's on a single machine. [9]

Over the next few years CDC sold a small number of the Digigraphics systems, first to aerospace companies including Lockheed and Martin Marietta, and later to the US Navy, for use in submarine design. After several years, CDC decided the concept was unprofitable, and closed the division. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Digital Equipment Corporation</span> U.S. computer manufacturer 1957–1998

Digital Equipment Corporation, using the trademark Digital, was a major American company in the computer industry from the 1960s to the 1990s. The company was co-founded by Ken Olsen and Harlan Anderson in 1957. Olsen was president until he was forced to resign in 1992, after the company had gone into precipitous decline.

<span class="mw-page-title-main">PDP-10</span> 36-bit computer by Digital (1966–1983)

Digital Equipment Corporation (DEC)'s PDP-10, later marketed as the DECsystem-10, is a mainframe computer family manufactured beginning in 1966 and discontinued in 1983. 1970s models and beyond were marketed under the DECsystem-10 name, especially as the TOPS-10 operating system became widely used.

<span class="mw-page-title-main">PDP-1</span> First computer made by Digital Equipment Corp

The PDP-1 is the first computer in Digital Equipment Corporation's PDP series and was first produced in 1959. It is famous for being the most important computer in the creation of hacker culture at the Massachusetts Institute of Technology, Bolt, Beranek and Newman and elsewhere. The PDP-1 is the original hardware for playing history's first game on a minicomputer, Steve Russell's Spacewar!

<span class="mw-page-title-main">PDP-11</span> Series of 16-bit minicomputers

The PDP–11 is a series of 16-bit minicomputers sold by Digital Equipment Corporation (DEC) from 1970 into the late 1990s, one of a set of products in the Programmed Data Processor (PDP) series. In total, around 600,000 PDP-11s of all models were sold, making it one of DEC's most successful product lines. The PDP-11 is considered by some experts to be the most popular minicomputer.

Control Data Corporation (CDC) was a mainframe and supercomputer company that in the 1960s was one of the nine major U.S. computer companies, which group included IBM, the Burroughs Corporation, and the Digital Equipment Corporation (DEC), the NCR Corporation (NCR), General Electric, and Honeywell, RCA and UNIVAC. For most of the 1960s, the strength of CDC was the work of the electrical engineer Seymour Cray who developed a series of fast computers, then considered the fastest computing machines in the world; in the 1970s, Cray left the Control Data Corporation and founded Cray Research (CRI) to design and make supercomputers. In 1988, after much financial loss, the Control Data Corporation began withdrawing from making computers and sold the affiliated companies of CDC; in 1992, Cray established Control Data Systems, Inc. The remaining affiliate companies of CDC currently do business as the software company Ceridian.

RT-11 is a discontinued small, low-end, single-user real-time operating system for the full line of Digital Equipment Corporation PDP-11 16-bit computers. RT-11 was first implemented in 1970. It was widely used for real-time computing systems, process control, and data acquisition across all PDP-11s. It was also used for low-cost general-use computing.

<span class="mw-page-title-main">PDP-6</span> 36-bit mainframe computer (1964–1966)

The PDP-6, short for Programmed Data Processor model 6, is a computer developed by Digital Equipment Corporation (DEC) during 1963 and first delivered in the summer of 1964. It was an expansion of DEC's existing 18-bit systems to use a 36-bit data word, which was at that time a common word size for large machines like IBM mainframes. The system was constructed using the same germanium transistor-based System Module layout as DEC's earlier machines, like the PDP-1 and PDP-4.

<span class="mw-page-title-main">Index register</span> CPU register used for modifying operand addresses

An index register in a computer's CPU is a processor register used for pointing to operand addresses during the run of a program. It is useful for stepping through strings and arrays. It can also be used for holding loop iterations and counters. In some architectures it is used for read/writing blocks of memory. Depending on the architecture it may be a dedicated index register or a general-purpose register. Some instruction sets allow more than one index register to be used; in that case additional instruction fields may specify which index registers to use.

<span class="mw-page-title-main">DECtape</span>

DECtape, originally called Microtape, is a magnetic tape data storage medium used with many Digital Equipment Corporation computers, including the PDP-6, PDP-8, LINC-8, PDP-9, PDP-10, PDP-11, PDP-12, and the PDP-15. On DEC's 32-bit systems, VAX/VMS support for it was implemented but did not become an official part of the product lineup.

<span class="mw-page-title-main">CDC 3000 series</span>

The CDC 3000 series are a family of mainframe computers from Control Data Corporation (CDC). The first member, the CDC 3600, was a 48-bit system introduced in 1963. The same basic design led to the cut-down CDC 3400 of 1964, and then the 24-bit CDC 3300, 3200 and 3100 introduced between 1964 and 1965. The 3000 series replaced the earlier CDC 1604 and CDC 924 systems.

<span class="mw-page-title-main">IMLAC</span> Graphical display system

IMLAC Corporation was an American electronics company in Needham, Massachusetts, that manufactured graphical display systems, mainly the PDS-1 and PDS-4, in the 1970s.

<span class="mw-page-title-main">AMD Am2900</span>

Am2900 is a family of integrated circuits (ICs) created in 1975 by Advanced Micro Devices (AMD). They were constructed with bipolar devices, in a bit-slice topology, and were designed to be used as modular components each representing a different aspect of a computer control unit (CCU). By using the bit slicing technique, the Am2900 family was able to implement a CCU with data, addresses, and instructions to be any multiple of 4 bits by multiplying the number of ICs. One major problem with this modular technique was that it required a larger number of ICs to implement what could be done on a single CPU IC. The Am2901 chip included an arithmetic logic unit (ALU) and 16 4-bit processor register slices, and was the "core" of the series. It could count using 4 bits and implement binary operations as well as various bit-shifting operations. The Am2909 was a 4-bit-slice address sequencer that could generate 4-bit addresses on a single chip, and by using n of them, it was able to generate 4n-bit addresses. It had a stack that could store a microprogram counter up to 4 nest levels, as well as a stack pointer.

The Massbus is a high-performance computer input/output bus designed in the 1970s by Digital Equipment Corporation (DEC). The architecture development was sponsored by Gordon Bell and John Levy was the principal architect.

<span class="mw-page-title-main">RK05</span> Disk drive for Digital Equipment Corporation minicomputers

Digital Equipment Corporation's RK05 is a disk drive whose removable disk pack can hold about 2.5 megabytes of data. Introduced 1972, it is similar to IBM's 1964-introduced 2310, and uses a disk pack similar to IBM's 2315 disk pack, although the latter only held 1 megabyte. An RK04 drive, which has half the capacity of an RK05, was also offered.

The CDC 1700 is a 16-bit word minicomputer, manufactured by the Control Data Corporation with deliveries beginning in May 1966.

<span class="mw-page-title-main">Itek</span> American defense spy camera manufacturer

Itek Corporation was a United States defense contractor that initially specialized in camera systems for spy satellites and various other reconnaissance systems. In the early 1960s they built a conglomerate in a fashion similar to LTV or Litton, during which time they developed the first CAD system and explored optical disc technology. These efforts were unsuccessful, and the company shed divisions to various companies, returning to its roots in the reconnaissance market. The remaining portions were eventually purchased by Litton in 1983, and then Hughes, Raytheon, and Goodrich Corporation.

IBM's Automatic Language Translator was a machine translation system that converted Russian documents into English. It used an optical disc that stored 170,000 word-for-word and statement-for-statement translations and a custom computer to look them up at high speed. Built for the US Air Force's Foreign Technology Division, the AN/GSQ-16, as it was known to the Air Force, was primarily used to convert Soviet technical documents for distribution to western scientists. The translator was installed in 1959, dramatically upgraded in 1964, and was eventually replaced by a mainframe running SYSTRAN in 1970.

DAC-1, for Design Augmented by Computer, was one of the earliest graphical computer aided design systems. Developed by General Motors, IBM was brought in as a partner in 1960 and the two developed the system and released it to production in 1963. It was publicly unveiled at the Fall Joint Computer Conference in Detroit 1964. GM used the DAC system, continually modified, into the 1970s when it was succeeded by CADANCE.

<span class="mw-page-title-main">PDP-8/e</span> 1970 model of the DEC PDP-8 line of minicomputers

The PDP-8/e was a model of the PDP-8 line of minicomputers, designed by the Digital Equipment Corporation to be a general purpose computer that inexpensively met the needs of the average user while also being capable of modular expansion to meet the more specific needs of advanced user.

Vector General (VG) was a series of graphics terminals and the name of the Californian company that produced them. They were first introduced in 1969 and were used in computer labs until the early 1980s.

References

Notes

  1. First, pg. 2
  2. First, pg. 2
  3. First, pg. 5
  4. First, pg. 2
  5. "Beating the Language Barrier", Time , 2 March 1962, pp. 74-75
  6. First, pg. 8
  7. "Timeline of Computer History, 1963", Computer History Museum
  8. "Itek Refocused", Time, 8 November 1963
  9. 274, pg. 1-3
  10. First, pg. 8

Bibliography