Diphenic acid

Last updated
Diphenic acid
Diphenic Acid Structural Formula V.1.svg
Names
Preferred IUPAC name
[1,1′-Biphenyl]-2,2′-dicarboxylic acid
Other names
2,2'-dibenzoic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.006.889 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 207-576-4
536420
PubChem CID
UNII
  • InChI=1S/C14H10O4/c15-13(16)11-7-3-1-5-9(11)10-6-2-4-8-12(10)14(17)18/h1-8H,(H,15,16)(H,17,18)
    Key: GWZCCUDJHOGOSO-UHFFFAOYSA-N
  • C1=CC=C(C(=C1)C2=CC=CC=C2C(=O)O)C(=O)O
Properties
C14H10O4
Molar mass 242.230 g·mol−1
Appearancewhite solid
Density 1.2917 g/cm3
Melting point 235.5 °C (455.9 °F; 508.6 K)
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Diphenic acid is an organic compound with the formula (C6H4CO2H)2. It is the most studied of several isomeric dicarboxylic acids of biphenyl. It is a white solid that can be prepared in the laboratory from anthranilic acid via the diazonium salt. [1] It is the product of the microbial action on phenanthrene. [2]

The compound forms a variety of coordination polymers. [3] It also exhibits atropisomerism.

Related Research Articles

Allenes

Allenes are organic compounds in which one carbon atom has double bonds with each of its two adjacent carbon centres. Allenes are classified as cumulated dienes. The parent compound of this class is propadiene, which is itself also called allene. Compounds with an allene-type structure but with more than three carbon atoms are members of a larger class of compounds called cumulenes with X=C=Y bonding.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines, it has the nitrogen atoms at positions 1 and 3 in the ring. The other diazines are pyrazine and pyridazine. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U).

Pyridine Heterocyclic aromatic organic compound

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom. It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Pyridine is colorless, but older or impure samples can appear yellow. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. As of 2016, it is synthesized on the scale of about 20,000 tons per year worldwide.

Aromaticity Phenomenon providing chemical stability in resonating hybrids of cyclic organic compounds

In chemistry, aromaticity is a property of cyclic (ring-shaped), typically planar (flat) structures with pi bonds in resonance that gives increased stability compared to other geometric or connective arrangements with the same set of atoms. Aromatic rings are very stable and do not break apart easily. Organic compounds that are not aromatic are classified as aliphatic compounds—they might be cyclic, but only aromatic rings have enhanced stability.

The Friedel–Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877 to attach substituents to an aromatic ring. Friedel–Crafts reactions are of two main types: alkylation reactions and acylation reactions. Both proceed by electrophilic aromatic substitution.

Aldol condensation

An aldol condensation is a condensation reaction in organic chemistry in which an enol or an enolate ion reacts with a carbonyl compound to form a β-hydroxyaldehyde or β-hydroxyketone, followed by dehydration to give a conjugated enone.

Phenanthrene Polycyclic aromatic hydrocarbon composed of three fused benzene rings

Phenanthrene a polycyclic aromatic hydrocarbon (PAH) with formula C14H10, consisting of three fused benzene rings. It is a colorless, crystal-like solid, but can also appear yellow. Phenanthrene is used to make dyes, plastics and pesticides, explosives and drugs. It has also been used to make bile acids, cholesterol and steroids.

Azobenzene Two phenyl rings linked by a N═N double bond

Azobenzene is a photoswitchable chemical compound composed of two phenyl rings linked by a N=N double bond. It is the simplest example of an aryl azo compound. The term 'azobenzene' or simply 'azo' is often used to refer to a wide class of similar compounds. These azo compounds are considered as derivatives of diazene (diimide), and are sometimes referred to as 'diazenes'. The diazenes absorb light strongly and are common dyes.

Imidazole Chemical compound

Imidazole is an organic compound with the formula C3N2H4. It is a white or colourless solid that is soluble in water, producing a mildly alkaline solution. In chemistry, it is an aromatic heterocycle, classified as a diazole, and has non-adjacent nitrogen atoms.

Quaternary ammonium cation class of chemical molecules

Quaternary ammonium cations, also known as quats, are positively charged polyatomic ions of the structure NR+
4
, R being an alkyl group or an aryl group. Unlike the ammonium ion and the primary, secondary, or tertiary ammonium cations, the quaternary ammonium cations are permanently charged, independent of the pH of their solution. Quaternary ammonium salts or quaternary ammonium compounds are salts of quaternary ammonium cations. Polyquats are a variety of engineered polymer forms which provide multiple quat molecules within a larger molecule.

Boron trifluoride is the inorganic compound with the formula BF3. This pungent colourless toxic gas forms white fumes in moist air. It is a useful Lewis acid and a versatile building block for other boron compounds.

Triphenylene Chemical compound

In chemistry, the organic compound triphenylene is a flat polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings. Triphenylene can be isolated from coal tar. It is also made synthetically by synthesis and trimerization of benzyne. One molecule of triphenylene has delocalized 18-π-electron systems based on a planar structure. It has the molecular formula C
18
H
12
.

Organosulfur compounds are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature abounds with organosulfur compounds—sulfur is essential for life. Of the 20 common amino acids, two are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.

Helicene

In organic chemistry, helicenes are ortho-condensed polycyclic aromatic compounds in which benzene rings or other aromatics are angularly annulated to give helically-shaped chiral molecules. The chemistry of helicenes has attracted continuing attention because of their unique structural, spectral, and optical features.

Diazonium compound Diazonium salts of formula R-N≡N+

Diazonium compounds or diazonium salts are a group of organic compounds sharing a common functional group R−N+
2
X
where R can be any organic group, such as an alkyl or an aryl, and X is an inorganic or organic anion, such as a halogen.

(<i>E</i>)-Stilbene Chemical compound

(E)-Stilbene, commonly known as trans-stilbene, is an organic compound represented by the condensed structural formula C6H5CH=CHC6H5. Classified as a diarylethene, it features a central ethylene moiety with one phenyl group substituent on each end of the carbon–carbon double bond. It has an (E) stereochemistry, meaning that the phenyl groups are located on opposite sides of the double bond, the opposite of its geometric isomer, cis-stilbene. Trans-stilbene occurs as a white crystalline solid at room temperature and is highly soluble in organic solvents. It can be converted to cis-stilbene photochemically, and further reacted to produce phenanthrene.

Organocobalt chemistry Chemistry of compounds with a carbon to cobalt bond

Organocobalt chemistry is the chemistry of organometallic compounds containing a carbon to cobalt chemical bond. Organocobalt compounds are involved in several organic reactions and the important biomolecule vitamin B12 has a cobalt-carbon bond. Many organocobalt compounds exhibit useful catalytic properties, the preeminent example being dicobalt octacarbonyl.

Endiandric acid C Chemical compound

Endiandric acid C, isolated from the tree Endiandra introrsa, is a well characterized chemical compound. Endiadric acid C is reported to have better antibiotic activity than ampicillin.

Hexahydroxydiphenic acid Oxidatively coupled derivative of gallic acid

Hexahydroxydiphenic acid is an organic compound with the formula [(HO)3C6HCO2H]2. It is the oxidatively coupled derivative of gallic acid It is a white solid, although samples are typically brown owing to oxidation.

A photolabile protecting group is a chemical modification to a molecule that can be removed with light. PPGs enable high degrees of chemoselectivity as they allow researchers to control spatial, temporal and concentration variables with light. Control of these variables is valuable as it enables multiple PPG applications, including orthogonality in systems with multiple protecting groups. As the removal of a PPG does not require chemical reagents, the photocleavage of a PPG is often referred to as "traceless reagent processes", and is often used in biological model systems and multistep organic syntheses. Since their introduction in 1962, numerous PPGs have been developed and utilized in a variety of wide-ranging applications from protein science to photoresists. Due to the large number of reported protecting groups, PPGs are often categorized by their major functional group(s); three of the most common classifications are detailed below.

References

  1. Atkinson, E. R.; Lawler, H. J. (1927). "Diphenic Acid". Organic Syntheses. 7: 30. doi:10.15227/orgsyn.007.0030.
  2. Moody, J. D.; Freeman, J. P.; Doerge, D. R.; Cerniglia, C. E. (2001). "Degradation of Phenanthrene and Anthracene by Cell Suspensions of Mycobacterium sp. Strain PYR-1". Applied and Environmental Microbiology. 67 (4): 1476–1483. doi:10.1128/AEM.67.4.1476-1483.2001. PMC   92757 . PMID   11282593.
  3. Yang, Jin; Ma, Jian-Fang; Liu, Ying-Ying; Ma, Ji-Cheng; Batten, Stuart R. (2009). "A Series of Lead(II) Complexes with π−π Stackings: Structural Diversities by Varying the Ligands". Crystal Growth & Design. 9 (4): 1894–1911. doi:10.1021/cg801085d.