Diphenylcarbazide

Last updated

Contents

Diphenylcarbazide
Diphenylcarbazide.svg
JWMJ8cd.png
Names
Preferred IUPAC name
N′,2-Diphenylhydrazine-1-carbohydrazide
Other names
  • 1,5-Diphenylcarbazide
  • sym-Diphenylcarbazide
  • s-Diphenylcarbazide
  • Diphenylcarbazide
  • DPC
Identifiers
3D model (JSmol)
AbbreviationsDPC
ChEBI
ChemSpider
ECHA InfoCard 100.004.913 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 205-403-7
KEGG
PubChem CID
UNII
  • InChI=1S/C13H14N4O/c18-13(16-14-11-7-3-1-4-8-11)17-15-12-9-5-2-6-10-12/h1-10,14-15H,(H2,16,17,18)
    Key: KSPIHGBHKVISFI-UHFFFAOYSA-N
  • C1=CC=C(C=C1)NNC(=O)NNC2=CC=CC=C2
Properties
C13H14N4O
Molar mass 242.28 g·mol −1
Appearancewhite odorless solid
Melting point 170–175 °C [1]
poor
Hazards [2] [1]
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

1,5-Diphenylcarbazide (or simply Diphenylcarbazide, often abbreviated DPC) is a chemical compound from the group of the carbazides. It has a structural formula similar to that of diphenylcarbazone and can be easily converted into it by oxidation.

Properties

Diphenylcarbazide is a white solid that is scarcely soluble in water, [3] but readily soluble in organic solvents like acetone, hot ethanol and acetic acid. [4] It forms colored complex compounds with certain metal ions. Diphenylcarbazide oxidizes to Diphenylcarbazone when exposed to light and air, turning pink in the process.

Uses

Diphenylcarbazide is used as a redox indicator [3] and for the photometric determination of certain heavy metal ions, like those of Chromium, Mercury, Cadmium, Osmium, Rubidium, Technetium and more.

Reacting a Diphenylcarbazide with Chromium (VI) compounds, such as chromates or dichromates produces diphenylcarbazone, which forms a red-violet complex with the chromium compounds. Chromium (III) compounds can also be determined using this method, by first oxidizing these to Chromium (VI) using an oxidizing agent (e.g. ammonium persulfate solution). Diphenylcarbazide has also been widely used in the chemical lab to detect Mercury (II) compounds, in a similar fashion.

The reagent is typically used either as 1% to 0.25% solution in some organic solvent, or in the form of test-strip paper for detection of heavy metals in drinking water at home. The reagent is very sensitive, with a sensitivity threshold at 0.000,000,05 g/ml for Chromium (VI) ions, and 0.000,002 g/ml for Mercury (II) ions, that is 50 ppb and 2000 ppb, respectively. [5]

In the beginning of the 20th century, the following procedure using the Diphenylcarbazide indicator was developed, to prove the presence of mercury in solution: One drop of the solution to be tested is deposited on a filter paper which had been dipped into a freshly prepared 1% alcoholic solution of Diphenylcarbazide. Mercury salts produce a purple spot, even in a very diluted solution. Chromates and molybdates produce the same reaction. [6] [7] [8] [9]

The major drawback of the test is the deterioration of stock solution of Diphenylcarbazide in different solvents. Thus, it needs to be freshly prepared. To avoid this problem, a solution has been found in the publication by Urone in 1955. Accordingly, non-aqueous Ethyl acetate and acetone were the better solvents, Diphenylcarbazide solutions of which are stable for months. Diphenylcarbazide solutions of Methyl ethyl ketone, methyl cellosolve (2-methoxyethanol), and Isopropyl alcohol are usable for 1-2 weeks. Aqueous solutions and solvents tending to be basic such as methanol and ethanol, and those containing traces of water and basic impurities, do not make good solvents for stock solutions of the colorimetric reagent [10]

Synthesis

At least 16 different routes to synthesizing the compound are known, most of which use Phenylhydrazine. An example of such a chemical reaction is the reaction between Phenylhydrazine and Urea to produce 1,5-Diphenylcarbazide in about 96% yield [11]

Related Research Articles

The term chromic acid is usually used for a mixture made by adding concentrated sulfuric acid to a dichromate, which may contain a variety of compounds, including solid chromium trioxide. This kind of chromic acid may be used as a cleaning mixture for glass. Chromic acid may also refer to the molecular species, H2CrO4 of which the trioxide is the anhydride. Chromic acid features chromium in an oxidation state of +6 (or VI). It is a strong and corrosive oxidising agent.

Fehlings solution

Fehling's solution is a chemical reagent used to differentiate between water-soluble carbohydrate and ketone functional groups, and as a test for reducing sugars and non-reducing sugars, supplementary to the Tollens' reagent test. The test was developed by German chemist Hermann von Fehling in 1849.

Chromate and dichromate Ion

Chromate salts contain the chromate anion, CrO2−
4
. Dichromate salts contain the dichromate anion, Cr
2
O2−
7
. They are oxyanions of chromium in the 6+ oxidation state and are moderately strong oxidizing agents. In an aqueous solution, chromate and dichromate ions can be interconvertible.

Potassium dichromate Chemical compound

Potassium dichromate, K2Cr2O7, is a common inorganic chemical reagent, most commonly used as an oxidizing agent in various laboratory and industrial applications. As with all hexavalent chromium compounds, it is acutely and chronically harmful to health. It is a crystalline ionic solid with a very bright, red-orange color. The salt is popular in the laboratory because it is not deliquescent, in contrast to the more industrially relevant salt sodium dichromate.

Pyridinium chlorochromate Chemical compound

Pyridinium chlorochromate (PCC) is a yellow-orange salt with the formula [C5H5NH]+[CrO3Cl]. It is a reagent in organic synthesis used primarily for oxidation of alcohols to form carbonyls. A variety of related compounds are known with similar reactivity. PCC offers the advantage of the selective oxidation of alcohols to aldehydes or ketones, whereas many other reagents are less selective.

Chromium trioxide Chemical compound

Chromium trioxide (also known as chromium(VI) oxide or chromic anhydride) is an inorganic compound with the formula CrO3. It is the acidic anhydride of chromic acid, and is sometimes marketed under the same name. This compound is a dark-purple solid under anhydrous conditions, bright orange when wet and which dissolves in water concomitant with hydrolysis. Millions of kilograms are produced annually, mainly for electroplating. Chromium trioxide is a powerful oxidiser and a carcinogen.

Liquid–liquid extraction (LLE), also known as solvent extraction and partitioning, is a method to separate compounds or metal complexes, based on their relative solubilities in two different immiscible liquids, usually water (polar) and an organic solvent (non-polar). There is a net transfer of one or more species from one liquid into another liquid phase, generally from aqueous to organic. The transfer is driven by chemical potential, i.e. once the transfer is complete, the overall system of chemical components that make up the solutes and the solvents are in a more stable configuration. The solvent that is enriched in solute(s) is called extract. The feed solution that is depleted in solute(s) is called the raffinate. LLE is a basic technique in chemical laboratories, where it is performed using a variety of apparatus, from separatory funnels to countercurrent distribution equipment called as mixer settlers. This type of process is commonly performed after a chemical reaction as part of the work-up, often including an acidic work-up.

Hexavalent chromium Chromium in the +6 oxidation state

Hexavalent chromium is chromium in any chemical compound that contains the element in the +6 oxidation state. Virtually all chromium ore is processed via hexavalent chromium, specifically the salt sodium dichromate. Hexavalent chromium is key to all materials made from chromium. Approximately 136,000 tonnes of hexavalent chromium were produced in 1985.

Potassium chromate Chemical compound

Potassium chromate is the inorganic compound with the formula (K2CrO4). This yellow solid is the potassium salt of the chromate anion. It is a common laboratory chemical, whereas sodium chromate is important industrially.

Biuret test

The biurettest, also known as Piotrowski's test, is a chemical test used for detecting the presence of peptide bonds. In the presence of peptides, a copper(II) ion forms mauve-colored coordination complexes in an alkaline solution. Several variants on the test have been developed, such as the BCA test and the Modified Lowry test.

Ammonium dichromate Chemical compound

Ammonium dichromate is an inorganic compound with the formula (NH4)2Cr2O7. In this compound, as in all chromates and dichromates, chromium is in a +6 oxidation state, commonly known as hexavalent chromium. It is a salt consisting of ammonium ions and dichromate ions.

Barium chromate Chemical compound

Barium chromate, named barium tetraoxochromate(VI) by the IUPAC, is a yellow sand like powder with the formula BaCrO4. It is a known oxidizing agent and produces a green flame when heated, a result of the barium ions.

Diphenylketene Chemical compound

Diphenylketene is a chemical substance of the ketene family. Diphenylketene, like most disubstituted ketenes, is a red-orange oil at room temperature and pressure. Due to the successive double bonds in the ketene structure R1R2C=C=O, diphenyl ketene is a heterocumule. The most important reaction of diphenyl ketene is the [2+2] cycloaddition at C-C, C-N, C-O, and C-S multiple bonds.

Cornforth reagent Chemical compound

The Cornforth reagent or pyridinium dichromate(PDC) is a pyridinium salt of dichromate with the chemical formula [C5H5NH]2[Cr2O7]. This compound is named after the Australian-British chemist Sir John Warcup Cornforth (b. 1917) who introduced it in 1962. The Cornforth reagent is a strong oxidizing agent which can convert primary and secondary alcohols to aldehydes and ketones respectively. In its chemical structure and functions it is closely related to other compounds made from hexavalent chromium oxide, such as pyridinium chlorochromate and Collins reagent. Because of their toxicity, these reagents are rarely used nowadays.

Oxidation of primary alcohols to carboxylic acids

The oxidation of primary alcohols to carboxylic acids is an important oxidation reaction in organic chemistry.

Isopropyl alcohol (IUPAC name propan-2-ol and also called isopropanol or 2-propanol) is a colorless, flammable chemical compound (chemical formula CH3CHOHCH3) with a strong odor. As an isopropyl group linked to a hydroxyl group, it is the simplest example of a secondary alcohol, where the alcohol carbon atom is attached to two other carbon atoms. It is a structural isomer of 1-propanol and ethyl methyl ether.

Chromium(VI) oxide peroxide Chemical compound

Chromium(VI) peroxide or chromium oxide peroxide is an unstable compound with the formula CrO5. This compound contains one oxo ligand and two peroxo ligands, making a total of five oxygen atoms per chromium atom.

Oxidation with chromium(VI) complexes involves the conversion of alcohols to carbonyl compounds or more highly oxidized products through the action of molecular chromium(VI) oxides and salts. The principal reagents are Collins reagent, PDC, and PCC. These reagents represent improvements over inorganic chromium(VI) reagents such as Jones reagent.

Jones oxidation

The Jones oxidation is an organic reaction for the oxidation of primary and secondary alcohols to carboxylic acids and ketones, respectively. It is named after its discoverer, Sir Ewart Jones. The reaction was an early method for the oxidation of alcohols. Its use has subsided because milder, more selective reagents have been developed, e.g. Collins reagent.

Diphenylcarbazone Chemical compound

1,5-Diphenylcarbazone is a chemical compound from the group of the carbazones.

References

  1. 1 2 Data-sheet 1,5-diphenylcarbazide (PDF) from Sigma-Aldrich, accessed on May 22, 2017
  2. Data-sheet 1,5-Diphenylcarbazide (PDF) from LabChem, accessed on May 15, 2020
  3. 1 2 Data-sheet 1,5-diphenylcarbazide (PDF) from Merck, accessed on May 16, 2011
  4. Entry on 1,5-Diphenylcarbonohydrazide at TCI Europe, accessed on June 27, 2011
  5. Data-sheet (PDF) from Valerus, accessed on May 17, 2020
  6. W. Böttiger, Bestimmung kleiner Mengen Quechsilbersalz in stärker Verdünnung. Z. Elektrochem. 22, 69 (1916)
  7. A. Stock, E. Rohland, Kolorimetrische Bestimmung sehr kleiner Quecksilbermengen, Z. Angew. Chem. 39. 791 (1926)
  8. A. Stock, W. Zimmermann, Zur Bestimmung kleinster Quecksilbermengen, Z. Angew. Chem. 41, 546 (1928)
  9. A. W. Scott, Adaptation of the Diphenylcarbazide Test for Mercury to the Scheme of Qualitative Analysis, J. Am. Ch. Soc. 51, 3351, (1929)
  10. P. F. Urone, “Stability of Colorimetric Reagent for Chromium, s-Diphenylcarbazide, in Various Solvents,” Anal. Chem. 1955, 27(8), 1354-1355
  11. Pasha; Madhusudana Reddy Synthetic Communications, 2009 , vol. 39, # 16 p. 2928 - 2934