Direct numerical control

Last updated

Direct numerical control (DNC), also known as distributed numerical control (also DNC), is a common manufacturing term for networking CNC machine tools. On some CNC machine controllers, the available memory is too small to contain the machining program (for example machining complex surfaces), so in this case the program is stored in a separate computer and sent directly to the machine, one block at a time. If the computer is connected to a number of machines it can distribute programs to different machines as required. Usually, the manufacturer of the control provides suitable DNC software. However, if this provision is not possible, some software companies provide DNC applications that fulfill the purpose. DNC networking or DNC communication is always required when CAM programs are to run on some CNC machine control.

Contents

Wireless DNC is also used in place of hard-wired versions. Controls of this type are very widely used in industries with significant sheet metal fabrication, such as the automotive, appliance, and aerospace industries.

History

1950s-1970s

Programs had to be walked to NC controls, generally on paper tape. NC controls had paper tape readers precisely for this purpose. [1] Many companies were still punching programs on paper tape well into the 1980s, more than twenty-five years after its elimination in the computer industry.

1980s

The focus in the 1980s was mainly on reliably transferring NC programs between a host computer and the control. The Host computers would frequently be Sun Microsystems, HP, Prime, DEC or IBM type computers running a variety of CAD/CAM software. DNC companies offered machine tool links using rugged proprietary terminals and networks. For example, DLog offered an x86 based terminal, and NCPC had one based on the 6809.[ clarification needed ] The host software would be responsible for tracking and authorising NC program modifications. Depending on program size, for the first time operators had the opportunity to modify programs at the DNC terminal. No time was lost due to broken tapes, and if the software was correctly used, an operator running incorrect or out of date programs became a thing of the past.

Older controls frequently had no port capable of receiving programs such as an RS232 or RS422 connector. In these cases, a device known as a Behind The Reader or BTR card was used. The connection between the control's tape reader and the internal processor was interrupted by a microprocessor based device which emulated the paper tape reader's signals, but which had a serial port connected to the DNC system. As far as the control was concerned, it was receiving from the paper tape unit as it always had; in fact it was the BTR or Reader Emulation card which was transmitting. A switch was frequently added to permit the paper tape reader to be used as a backup.

1990s to present

The PC explosion in the late 1980s and early 1990s signalled the end of the road for proprietary DNC terminals. With some exceptions, CNC manufacturers began migrating to PC-based controls running DOS, Windows or OS/2 which could be linked in to existing networks using standard protocols. Customers began migrating away from expensive minicomputer and workstation based CAD/CAM toward more cost-effective PC-based solutions. Users began to demand more from their DNC systems than secure upload/download and editing. PC-based systems which could accomplish these tasks based on standard networks began to be available at minimal or no cost. In some cases, users no longer needed a DNC "expert" to implement shop floor networking, and could do it themselves. However, the task can still be a challenge based on the CNC Control wiring requirements, parameters and NC program format.

To remain competitive, therefore, DNC companies moved their offerings upmarket into DNC Networking, Shop Floor Control or SFC, Manufacturing Execution Systems or MES. These terms encompass concepts such as real-time Machine Monitoring, Graphics, Tool Management, Traveler Management and Scheduling. Instead of merely acting as a repository for programs, DNC systems aim to give operators at the machine an integrated view of all the information (both textual and graphical) they require in order to carry out a manufacturing operation, and give management timely information as to the progress of each step. DNC systems are frequently directly integrated with corporate CAD/CAM, ERP and Computer-aided Process Planning CAPP systems.

Special protocols

A challenge when interfacing into machine tools is that in some cases special protocols are used. Two well-known examples are Mazak's Mazatrol and Heidenhain's LSV2 protocol. Many DNC systems offer support for these protocols. Another protocol is DNC2 which is found on Fanuc controls. DNC2 allows advanced interchange of data with the control, such as tooling offsets, tool life information and machine status as well as automated transfer without operator intervention.

Machine monitoring

One of the issues involved in machine monitoring is whether or not it can be accomplished automatically in a practical way. In the 1980s monitoring was typically done by having a menu on the DNC terminal where the operator had to manually indicate what was being done by selecting from a menu, which has obvious drawbacks. There have been advances in passive monitoring systems where the machine condition can be determined by hardware attached in such a way as not to interfere with machine operations (and potentially void warranties). Many modern controls allow external applications to query their status using a special protocol. MTConnect is one prominent attempt to augment the existing world of proprietary systems with some open-source, industry-standard protocols and XML schemas and an ecosystem of massively multiplayer app development and mashups (analogous to that with smartphones) so that these long-sought higher levels of manufacturing business intelligence and workflow automation can be realized.

Alternatives

Smaller facilities will typically use a portable PC or laptop to avoid the expense of a fully networked DNC system. In the past Facit Walk Disk and a similar device from Mazak were very popular.

Footnotes

  1. Patton, William J. (1972). Numerical Control: Practice and Application. Reston, Virginia: Reston Publishing Company, Inc. p. 8. ISBN   0-87909-564-4.

Related Research Articles

<span class="mw-page-title-main">Computer-aided manufacturing</span> Use of software to control industrial processes

Computer-aided manufacturing (CAM) also known as computer-aided modeling or computer-aided machining is the use of software to control machine tools in the manufacturing of work pieces. This is not the only definition for CAM, but it is the most common; CAM may also refer to the use of a computer to assist in all operations of a manufacturing plant, including planning, management, transportation and storage. Its primary purpose is to create a faster production process and components and tooling with more precise dimensions and material consistency, which in some cases, uses only the required amount of raw material, while simultaneously reducing energy consumption. CAM is now a system used in schools and lower educational purposes. CAM is a subsequent computer-aided process after computer-aided design (CAD) and sometimes computer-aided engineering (CAE), as the model generated in CAD and verified in CAE can be input into CAM software, which then controls the machine tool. CAM is used in many schools alongside computer-aided design (CAD) to create objects.

Mastercam is a suite of Computer-Aided Manufacturing (CAM) and CAD/CAM software applications. Founded in MA in 1983, CNC Software, LLC is one of the oldest developers of PC-based computer-aided design / computer-aided manufacturing (CAD/CAM) software. They are one of the first to introduce CAD/CAM software designed for both machinists and engineers. Mastercam, CNC Software's main product, started as a 2D CAM system with CAD tools that let machinists design virtual parts on a computer screen and also guided computer numerical controlled (CNC) machine tools in the manufacture of parts. Since then, Mastercam has grown into the most widely used CAD/CAM package in the world. CNC Software, LLC is now located in Tolland, Connecticut.

<span class="mw-page-title-main">Numerical control</span> Computer control of machine tools, lathes and milling machines, also used on 3D printers

Numerical control is the automated control of machining tools by means of a computer. A CNC machine processes a piece of material to meet specifications by following coded programmed instructions and without a manual operator directly controlling the machining operation.

<span class="mw-page-title-main">Friden Flexowriter</span> Teleprinter

The Friden Flexowriter was a teleprinter, a heavy-duty electric typewriter capable of being driven not only by a human typing, but also automatically by several methods, including direct attachment to a computer and by use of paper tape.

G-code is the most widely used computer numerical control (CNC) programming language. It is used mainly in computer-aided manufacturing to control automated machine tools, and has many variants.

<span class="mw-page-title-main">CAD/CAM</span> Computer-Aided Design/Computer-Aided Manufacturing

CAD/CAM refers to the integration of Computer-aided design (CAD) and Computer-aided manufacturing (CAM). Both of these require powerful computers. CAD software helps designers and draftsmen; CAM "reduces manpower costs" in the manufacturing process.

<span class="mw-page-title-main">Tebis</span>

Tebis is a CAD/CAM software provided by Tebis AG, with headquarters in Martinsried near Munich/Germany. Development locations: Martinsried and Norderstedt, Germany International locations: China, Spain, France, Italy, Portugal, Sweden, United Kingdom, USA

<span class="mw-page-title-main">Computer-integrated manufacturing</span> Manufacturing controlled by computers

Computer-integrated manufacturing (CIM) is the manufacturing approach of using computers to control entire production process. This integration allows individual processes to exchange information with each part. Manufacturing can be faster and less error-prone by the integration of computers. Typically CIM relies on closed-loop control processes based on real-time input from sensors. It is also known as flexible design and manufacturing.

PCB NC drill files convey PCB drilling and routing information. The NC formats were originally designed by CNC drill and route machine vendors as proprietary input formats for their equipment, and are known under their company name: Excellon, Hitachi, Sieb & Meyer, Posalux, etc. These formats are similar as they are based on RS-274-C and related to G-code. In 1985 IPC published a generic standard NC format, IPC-NC-349. Later XNC was designed, a simple strict subset of IPC-NC-349, designed not for driving machines but for exchanging drill information between CAD and CAM. They are collectively referred to as (PCB) NC files.

Manufacturing process management (MPM) is a collection of technologies and methods used to define how products are to be manufactured. MPM differs from ERP/MRP which is used to plan the ordering of materials and other resources, set manufacturing schedules, and compile cost data.

<span class="mw-page-title-main">Vero Software</span> CAD CAM company

Vero Software is a company based in Cheltenham, England, that specialises in CAD CAM.

Surfware, Inc. is a Camarillo, CA-based company involved in the development of CAD/CAM software.

<span class="mw-page-title-main">STEP-NC</span> Machine tool control language

STEP-NC is a machine tool control language that extends the ISO 10303 STEP standards with the machining model in ISO 14649, adding geometric dimension and tolerance data for inspection, and the STEP PDM model for integration into the wider enterprise. The combined result has been standardized as ISO 10303-238.

<span class="mw-page-title-main">CNC router</span>

A computer numerical control (CNC) router is a computer-controlled cutting machine which typically mounts a hand-held router as a spindle which is used for cutting various materials, such as wood, composites, metals, plastics, glass, and foams. CNC routers can perform the tasks of many carpentry shop machines such as the panel saw, the spindle moulder, and the boring machine. They can also cut joinery such as mortises and tenons.

MazaCAM is a CNC programming system for the Mazak CNC machine-tools, sold and supported by SolutionWare Corporation.

This outline is an overview of software and a topical guide in list form.

<span class="mw-page-title-main">WorkNC</span>

WorkNC is a Computer aided manufacturing (CAM) software developed by Sescoi for multi-axis machining.

The history of numerical control (NC) began when the automation of machine tools first incorporated concepts of abstractly programmable logic, and it continues today with the ongoing evolution of computer numerical control (CNC) technology.

A Post Processor is a unique "driver" specific to a CNC machine, robot or mechanism; some machines start at different locations or require extra movement between each operation, the Post-Processor works with the CAM software or off-line programming software to make sure the G-Code output or program is correct for a specific Trademark machine Control Cabinet CAM software uses geometry from a CAD model and converts it to G-code. The CAM software analyzes the CAD model and determines what tooling and toolpaths will be used to mill the desired features. Doing so requires a CAM post processor that generates the exact G-code dialect used by the machine Control Module that is being targeted. An instance of such a translation is often referred to as a "post". There will be a different “post” for each G-code dialect the CAM software supports. Post Processors, rather the “post” uses an intermediate format that captures the G-code commands in a dialect-independent form. Most CAM software accomplishes this with an intermediate format called "CL.Data."

<span class="mw-page-title-main">EXAPT</span>

EXAPT is a production oriented programming language to generate NC programs with control information for machining tools and enables to consider production-related issues of various machining processes.