Discourse on the Tides

Last updated

"Discourse on the Tides" (Italian : Discorso Sul Flusso E Il Reflusso Del Mare) is an essay written by Galileo Galilei in 1616 as a letter to Alessandro Orsini that attempted to explain the motion of Earth's tides as a consequence of Earth's rotation and revolution around the Sun. [1] The same ideas form an important part of Galileo's Dialogue Concerning the Two Chief World Systems. Galileo's theory was in fact erroneous, as proven by future scientific research and contemporary observations.

Contents

Background

Galileo composed "Discourse on the Tides" while in Rome and appealing for papal acceptance of the teaching of Copernican theory. The letter is thus not just an explanation of tidal phenomenon but also a private confirmation and defense of Galileo's ideas on heliocentrism, which are discussed completely in his Dialogue Concerning the Two Chief World Systems . Galileo's ideas for tidal theory may have begun during 1595. While aboard a ferry carrying freshwater to Venice, Galileo noticed that the ship's cargo would undulate in accordance with the rocking of the ship. [2]

Galileo wished to present a convincing argument for heliocentrism. He was aware that all the astronomical arguments in the Dialogue were also consistent with the Tychonic system. Hence, his desire to present his theory of the tides which, he believed, provided clear evidence for the motion of the Earth.

Summary

Earth's annual and daily cycles can be thought of in terms of a wheel moving to the right as a point on the wheel revolves clockwise around the wheel's central axis. While moving over the top half of the wheel, the point travels to the right, in the same direction as the wheel itself. The opposite is true while traveling under the bottom half. Theory of tides.png
Earth's annual and daily cycles can be thought of in terms of a wheel moving to the right as a point on the wheel revolves clockwise around the wheel's central axis. While moving over the top half of the wheel, the point travels to the right, in the same direction as the wheel itself. The opposite is true while traveling under the bottom half.

The letter compares the ocean's waves to the disturbances in a vase of water, which move for three reasons: the slope of the vase, external forces exerted on the vase-water system, and the possible acceleration of the vase itself. [1] Comparably, the ocean's tides are due to Earth's terrain, wind currents, and circular accelerations. In Galileo's understanding, Earth's rotation and simultaneous orbital revolution dictate that half of the Earth's rotational arc is in concordance with the direction of revolution and the other half is opposed to the direction of revolution. He reasoned that by sometimes matching and sometimes counteracting the motion of orbit, positive and negative acceleration is generated that influences bodies of water to rock back and forth, creating the tides. Though these opposing acceleration cannot be observed, large bodies of water containing points of location far away enough to experience significantly different vectors of acceleration would necessarily contour into waves. [2]

Criticism

Galileo's theory of the tides could not account for one of the two daily occurrences of high tide observed along most coastlines. [2] He countered that the totality of Earth's water system contains an extenuating amount of variables, such as Earth's tilt, uneven surface and coastline, oceanic depth, and inclement winds, that can explain the second high tide. Also, Galileo argued that most natural scientists were examining and basing theories on the tides of the Mediterranean Sea, a microcosm compared to the ocean that may be idiosyncratic. [3] Historical writer E. J. Aiton states that the discourse "is among the least successful of [Galileo's] investigations and completely misrepresents the phenomena it is supposed to explain," and served mainly as an impetus for continued research by Galileo's followers. [3] Aiton reveals that Galileo erred in choosing two different frames of reference: the tide is the motion of water relative to the Earth, but annual revolution is the motion of the Earth, and its water, relative to the Sun. Annual revolution results in a force that accelerates the Earth-water system but does not accelerate the water relative to the Earth, in the same way that an observer standing on Earth's surface does not feel the gravitational attraction of the Sun because the observer and Earth are moving together around the Sun.

Retrospect

The discourse does not include gravitational forces in its theory to explain the Earth's orbit and does not consider the relation between the ocean and gravitational forces, like that of the Moon. [1] Occurring invisibly, gravity was far too mystic for Galileo's consideration. [2] Galileo did end the "Discourse on the Tides" with reservations that his theory may be incorrect and the hope that further scientific investigation will confirm his proposal. Still, his 1632 Dialogue Concerning the Two Chief World Systems omitted gravitational forces and included a reprisal of his tidal theory in its fourth section.

See also

Related Research Articles

Mass Quantity of matter

Mass is both a property of a physical body and a measure of its resistance to acceleration when a net force is applied. An object's mass also determines the strength of its gravitational attraction to other bodies.

Tidal acceleration

Tidal acceleration is an effect of the tidal forces between an orbiting natural satellite, and the primary planet that it orbits. The acceleration causes a gradual recession of a satellite in a prograde orbit away from the primary, and a corresponding slowdown of the primary's rotation. The process eventually leads to tidal locking, usually of the smaller body first, and later the larger body. The Earth–Moon system is the best-studied case.

Tide Rise and fall of the sea level under astronomical gravitational influences

Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon and the Sun, and the rotation of the Earth.

The tidal force is a gravitational effect that stretches a body along the line towards the center of mass of another body due to a gradient in gravitational field from the other body; it is responsible for diverse phenomena, including tides, tidal locking, breaking apart of celestial bodies and formation of ring systems within the Roche limit, and in extreme cases, spaghettification of objects. It arises because the gravitational field exerted on one body by another is not constant across its parts: the nearest side is attracted more strongly than the farthest side. It is this difference that causes a body to get stretched. Thus, the tidal force is also known as the differential force, as well as a secondary effect of the gravitational field.

Gravity Phenomenon of attraction between objects with mass

Gravity, or gravitation, is a natural phenomenon by which all things with mass or energy—including planets, stars, galaxies, and even light—are attracted to one another. On Earth, gravity gives weight to physical objects, and the Moon's gravity causes the ocean tides. The gravitational attraction of the original gaseous matter present in the Universe caused it to begin coalescing and forming stars and caused the stars to group together into galaxies, so gravity is responsible for many of the large-scale structures in the Universe. Gravity has an infinite range, although its effects become weaker as objects get further away.

Geocentric model Superseded description of the Universe with Earth at the center

In astronomy, the geocentric model is a superseded description of the Universe with Earth at the center. Under the geocentric model, the Sun, Moon, stars, and planets all orbit Earth. The geocentric model was the predominant description of the cosmos in many ancient civilizations, such as those of Aristotle in Classical Greece and Ptolemy in Roman Egypt.

Celestial mechanics Branch of astronomy

Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics to astronomical objects, such as stars and planets, to produce ephemeris data.

Heliocentrism Astronomical model where the Earth and planets revolve around the Sun

Heliocentrism is the astronomical model in which the Earth and planets revolve around the Sun at the center of the Universe. Historically, heliocentrism was opposed to geocentrism, which placed the Earth at the center. The notion that the Earth revolves around the Sun had been proposed as early as the third century BC by Aristarchus of Samos, who had been influenced by a concept presented by Philolaus of Croton. In medieval Europe, however, Aristarchus' heliocentrism attracted little attention—possibly because of the loss of scientific works of the Hellenistic period.

<i>Dialogue Concerning the Two Chief World Systems</i> Book by Galileo Galilei

The Dialogue Concerning the Two Chief World Systems is a 1632 Italian-language book by Galileo Galilei comparing the Copernican system with the traditional Ptolemaic system. It was translated into Latin as Systema cosmicum in 1635 by Matthias Bernegger. The book was dedicated to Galileo's patron, Ferdinando II de' Medici, Grand Duke of Tuscany, who received the first printed copy on February 22, 1632.

Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames. Galileo Galilei first described this principle in 1632 in his Dialogue Concerning the Two Chief World Systems using the example of a ship travelling at constant velocity, without rocking, on a smooth sea; any observer below the deck would not be able to tell whether the ship was moving or stationary.

Orbital decay

In orbital mechanics, orbitaldecay is a gradual decrease of the distance between two orbiting bodies at their closest approach over many orbital periods. These orbiting bodies can be a planet and its satellite, a star and any object orbiting it, or components of any binary system. Orbits do not decay without some friction-like mechanism which transfers energy from the orbital motion. This can be any of a number of mechanical, gravitational, or electromagnetic effects. For bodies in low Earth orbit, the most significant effect is atmospheric drag.

Copernican Revolution 16th to 17th century intellectual revolution

The Copernican Revolution was the paradigm shift from the Ptolemaic model of the heavens, which described the cosmos as having Earth stationary at the center of the universe, to the heliocentric model with the Sun at the center of the Solar System. This revolution consisted of two phases; the first being extremely mathematical in nature and the second phase starting in 1610 with the publication of a pamphlet by Galileo. Beginning with the publication of Nicolaus Copernicus’s De revolutionibus orbium coelestium, contributions to the “revolution” continued until finally ending with Isaac Newton’s work over a century later.

Orbit of the Moon The Moons circuit around the Earth

The Moon orbits Earth in the prograde direction and completes one revolution relative to the Vernal Equinox and the stars in about 27.32 days and one revolution relative to the Sun in about 29.53 days. Earth and the Moon orbit about their barycentre, which lies about 4,670 km (2,900 mi) from Earth's center. On average, the distance to the Moon is about 385,000 km (239,000 mi) from Earth's center, which corresponds to about 60 Earth radii or 1.282 light-seconds.

Tidal heating

Tidal heating occurs through the tidal friction processes: orbital and rotational energy is dissipated as heat in either the surface ocean or interior of a planet or satellite. When an object is in an elliptical orbit, the tidal forces acting on it are stronger near periapsis than near apoapsis. Thus the deformation of the body due to tidal forces varies over the course of its orbit, generating internal friction which heats its interior. This energy gained by the object comes from its gravitational energy, so over time in a two-body system, the initial elliptical orbit decays into a circular orbit. Sustained tidal heating occurs when the elliptical orbit is prevented from circularizing due to additional gravitational forces from other bodies that keep tugging the object back into an elliptical orbit. In this more complex system, gravitational energy still is being converted to thermal energy; however, now the orbit's semimajor axis would shrink rather than its eccentricity.

Copernican heliocentrism Concept that the Earth rotates around the Sun

Copernican heliocentrism is the name given to the astronomical model developed by Nicolaus Copernicus and published in 1543. This model positioned the Sun at the center of the Universe, motionless, with Earth and the other planets orbiting around it in circular paths, modified by epicycles, and at uniform speeds. The Copernican model displaced the geocentric model of Ptolemy that had prevailed for centuries, which had placed Earth at the center of the Universe. Copernican heliocentrism is often regarded as the launching point to modern astronomy and the Scientific Revolution.

Theory of tides science of interpretation and prediction of deformations of astronomical bodies and their atmospheres and oceans under the gravitational loading of other astronomical bodies

The theory of tides is the application of continuum mechanics to interpret and predict the tidal deformations of planetary and satellite bodies and their atmospheres and oceans under the gravitational loading of another astronomical body or bodies.

King tide colloquial term for an especially high spring tide, such as a perigean spring tide.

A king tide is an especially high spring tide, especially the perigean spring tides which occur three or four times a year.

Apsidal precession Rotation of a celestial bodys orbital line of apsides

In celestial mechanics, apsidal precession is the precession of the line connecting the apsides of an astronomical body's orbit. The apsides are the orbital points closest (periapsis) and farthest (apoapsis) from its primary body. The apsidal precession is the first time derivative of the argument of periapsis, one of the six main orbital elements of an orbit. Apsidal precession is considered positive when the orbit's axis rotates in the same direction as the orbital motion. An apsidal period is the time interval required for an orbit to precess through 360°.

Galileo Galilei Italian polymath

Galileo di Vincenzo Bonaiuti de' Galilei was an Italian astronomer, physicist and engineer, sometimes described as a polymath, from Pisa. Galileo has been called the "father of observational astronomy", the "father of modern physics", the "father of the scientific method", and the "father of modern science".

Long-period tides Gravitational tides, typically with amplitudes of a few centimeters or less and periods longer than one day, generated by changes in the Earths orientation relative to the Sun, Moon, and Jupiter

Long-period tides are gravitational tides with periods longer than one day, typically with amplitudes of a few centimeters or less. Long-period tidal constituents with relatively strong forcing include the lunar fortnightly (Mf) and lunar monthly (Ms) as well as the solar semiannual (Ssa) and solar annual (Sa) constituents.

References

  1. 1 2 3 Gigli, Rosella. "Galileo's Theory of the Tides." The Galileo Project, 1995. http://galileo.rice.edu/sci/observations/tides.html. Retrieved February 20, 2014
  2. 1 2 3 4 Tyson, Peter. "Galileo's Big Mistake." PBS, October 29, 2002. https://www.pbs.org/wgbh/nova/earth/galileo-big-mistake.html. Retrieved February 21, 2014
  3. 1 2 3 Aiton, E.J. “Galileo’s Theory of the Tides.” Annals of Science 10. 1 (1954). 44-57. http://www.tandfonline.com/doi/pdf/10.1080/00033795400200054. Retrieved April 18, 2014.