Dispersion relation

Last updated
In a prism, dispersion causes different colors to refract at different angles, splitting white light into a rainbow of colors. Prism rainbow schema.png
In a prism, dispersion causes different colors to refract at different angles, splitting white light into a rainbow of colors.

In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency-dependence of wave propagation and attenuation.

Contents

Dispersion may be caused either by geometric boundary conditions (waveguides, shallow water) or by interaction of the waves with the transmitting medium. Elementary particles, considered as matter waves, have a nontrivial dispersion relation, even in the absence of geometric constraints and other media.

In the presence of dispersion, a wave does not propagate with an unchanging waveform, giving rise to the distinct frequency-dependent phase velocity and group velocity.

Dispersion

Dispersion occurs when sinusoidal waves of different wavelengths have different propagation velocities, so that a wave packet of mixed wavelengths tends to spread out in space. The speed of a plane wave, , is a function of the wave's wavelength :

The wave's speed, wavelength, and frequency, f, are related by the identity

The function expresses the dispersion relation of the given medium. Dispersion relations are more commonly expressed in terms of the angular frequency and wavenumber . Rewriting the relation above in these variables gives

where we now view f as a function of k. The use of ω(k) to describe the dispersion relation has become standard because both the phase velocity ω/k and the group velocity /dk have convenient representations via this function.

The plane waves being considered can be described by

where

Plane waves in vacuum

Plane waves in vacuum are the simplest case of wave propagation: no geometric constraint, no interaction with a transmitting medium.

Electromagnetic waves in vacuum

For electromagnetic waves in vacuum, the angular frequency is proportional to the wavenumber:

This is a linear dispersion relation. In this case, the phase velocity and the group velocity are the same:

and thus both are equal to the speed of light in vacuum, which is frequency-independent.

De Broglie dispersion relations

For de Broglie matter waves the frequency dispersion relation is non-linear:

The equation says the matter wave frequency in vacuum varies with wavenumber () in the non-relativistic approximation. The variation has two parts: a constant part due to the de Broglie frequency of the rest mass () and a quadratic part due to kinetic energy.

Derivation

While applications of matter waves occur at non-relativistic velocity, de Broglie applied special relativity to derive his waves. Starting from the relativistic energy–momentum relation:

use the de Broglie relations for energy and momentum for matter waves,

where ω is the angular frequency and k is the wavevector with magnitude |k| = k, equal to the wave number. Divide by and take the square root. This gives the relativistic frequency dispersion relation:

Practical work with matter waves occurs at non-relativistic velocity. To approximate, we pull out the rest-mass dependent frequency:

Then we see that the factor is very small so for not too large, we expand and multiply:

This gives the non-relativistic approximation discussed above. If we start with the non-relativistic Schrödinger equation we will end up without the first, rest mass, term.

Frequency versus wavenumber

As mentioned above, when the focus in a medium is on refraction rather than absorption—that is, on the real part of the refractive index—it is common to refer to the functional dependence of angular frequency on wavenumber as the dispersion relation. For particles, this translates to a knowledge of energy as a function of momentum.

Waves and optics

The name "dispersion relation" originally comes from optics. It is possible to make the effective speed of light dependent on wavelength by making light pass through a material which has a non-constant index of refraction, or by using light in a non-uniform medium such as a waveguide. In this case, the waveform will spread over time, such that a narrow pulse will become an extended pulse, i.e., be dispersed. In these materials, is known as the group velocity [1] and corresponds to the speed at which the peak of the pulse propagates, a value different from the phase velocity. [2]

Deep water waves

Frequency dispersion of surface gravity waves on deep water. The # red square moves with the phase velocity, and the * green dots propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The # red square traverses the figure in the time it takes the * green dot to traverse half. Wave group.gif
Frequency dispersion of surface gravity waves on deep water. The red square moves with the phase velocity, and the green dots propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square traverses the figure in the time it takes the green dot to traverse half.

The dispersion relation for deep water waves is often written as

where g is the acceleration due to gravity. Deep water, in this respect, is commonly denoted as the case where the water depth is larger than half the wavelength. [3] In this case the phase velocity is

and the group velocity is

Waves on a string

Two-frequency beats of a non-dispersive transverse wave. Since the wave is non-dispersive, * phase and * group velocities are equal. Two-frequency beats of a non-dispersive transverse wave (animated).gif
Two-frequency beats of a non-dispersive transverse wave. Since the wave is non-dispersive, phase and group velocities are equal.

For an ideal string, the dispersion relation can be written as

where T is the tension force in the string, and μ is the string's mass per unit length. As for the case of electromagnetic waves in vacuum, ideal strings are thus a non-dispersive medium, i.e. the phase and group velocities are equal and independent (to first order) of vibration frequency.

For a nonideal string, where stiffness is taken into account, the dispersion relation is written as

where is a constant that depends on the string.

Electron band structure

In the study of solids, the study of the dispersion relation of electrons is of paramount importance. The periodicity of crystals means that many levels of energy are possible for a given momentum and that some energies might not be available at any momentum. The collection of all possible energies and momenta is known as the band structure of a material. Properties of the band structure define whether the material is an insulator, semiconductor or conductor.

Phonons

Phonons are to sound waves in a solid what photons are to light: they are the quanta that carry it. The dispersion relation of phonons is also non-trivial and important, being directly related to the acoustic and thermal properties of a material. For most systems, the phonons can be categorized into two main types: those whose bands become zero at the center of the Brillouin zone are called acoustic phonons, since they correspond to classical sound in the limit of long wavelengths. The others are optical phonons, since they can be excited by electromagnetic radiation.

Electron optics

With high-energy (e.g., 200 keV, 32 fJ) electrons in a transmission electron microscope, the energy dependence of higher-order Laue zone (HOLZ) lines in convergent beam electron diffraction (CBED) patterns allows one, in effect, to directly image cross-sections of a crystal's three-dimensional dispersion surface. [4] This dynamical effect has found application in the precise measurement of lattice parameters, beam energy, and more recently for the electronics industry: lattice strain.

History

Isaac Newton studied refraction in prisms but failed to recognize the material dependence of the dispersion relation, dismissing the work of another researcher whose measurement of a prism's dispersion did not match Newton's own. [5]

Dispersion of waves on water was studied by Pierre-Simon Laplace in 1776. [6]

The universality of the Kramers–Kronig relations (1926–27) became apparent with subsequent papers on the dispersion relation's connection to causality in the scattering theory of all types of waves and particles. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Group velocity</span> Physical quantity

The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the modulation or envelope of the wave—propagates through space.

<span class="mw-page-title-main">Phase velocity</span> Rate at which the phase of the wave propagates in space

The phase velocity of a wave is the rate at which the wave propagates in any medium. This is the velocity at which the phase of any one frequency component of the wave travels. For such a component, any given phase of the wave will appear to travel at the phase velocity. The phase velocity is given in terms of the wavelength λ (lambda) and time period T as

<span class="mw-page-title-main">Wavelength</span> Distance over which a waves shape repeats

In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings. Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). The term "wavelength" is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the change per unit length, but it is otherwise dimensionless. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles. Phonons can be thought of as quantized sound waves, similar to photons as quantized light waves. However, photons are fundamental particles that can be individually detected, whereas phonons, being quasiparticles, are an emergent phenomenon.

<span class="mw-page-title-main">Wavenumber</span> Spatial frequency of a wave

In the physical sciences, the wavenumber, also known as repetency, is the spatial frequency of a wave, measured in cycles per unit distance or radians per unit distance. It is analogous to temporal frequency, which is defined as the number of wave cycles per unit time or radians per unit time.

A wavenumber–frequency diagram is a plot displaying the relationship between the wavenumber and the frequency of certain phenomena. Usually frequencies are placed on the vertical axis, while wavenumbers are placed on the horizontal axis.

<span class="mw-page-title-main">Dispersion (optics)</span> Dependence of phase velocity on frequency

In optics and in wave propagation in general, dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency; sometimes the term chromatic dispersion is used for specificity to optics in particular. A medium having this common property may be termed a dispersive medium.

Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave.

<span class="mw-page-title-main">Debye model</span> Method in physics

In thermodynamics and solid-state physics, the Debye model is a method developed by Peter Debye in 1912 for estimating the phonon contribution to the specific heat in a solid. It treats the vibrations of the atomic lattice (heat) as phonons in a box, in contrast to the Einstein photoelectron model, which treats the solid as many individual, non-interacting quantum harmonic oscillators. The Debye model correctly predicts the low-temperature dependence of the heat capacity of solids, which is proportional to – the Debye T 3 law. Similarly to the Einstein photoelectron model, it recovers the Dulong–Petit law at high temperatures. Due to simplifying assumptions, its accuracy suffers at intermediate temperatures.

<span class="mw-page-title-main">Capillary wave</span> Wave on the surface of a fluid, dominated by surface tension

A capillary wave is a wave traveling along the phase boundary of a fluid, whose dynamics and phase velocity are dominated by the effects of surface tension.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle. It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons.

In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

<span class="mw-page-title-main">Wave shoaling</span> Effect by which surface waves entering shallower water change in wave height

In fluid dynamics, wave shoaling is the effect by which surface waves, entering shallower water, change in wave height. It is caused by the fact that the group velocity, which is also the wave-energy transport velocity, changes with water depth. Under stationary conditions, a decrease in transport speed must be compensated by an increase in energy density in order to maintain a constant energy flux. Shoaling waves will also exhibit a reduction in wavelength while the frequency remains constant.

<span class="mw-page-title-main">Envelope (waves)</span> Smooth curve outlining the extremes of an oscillating signal

In physics and engineering, the envelope of an oscillating signal is a smooth curve outlining its extremes. The envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude. The figure illustrates a modulated sine wave varying between an upper envelope and a lower envelope. The envelope function may be a function of time, space, angle, or indeed of any variable.

Hopfield dielectric – in quantum mechanics a model of dielectric consisting of quantum harmonic oscillators interacting with the modes of the quantum electromagnetic field. The collective interaction of the charge polarization modes with the vacuum excitations, photons leads to the perturbation of both the linear dispersion relation of photons and constant dispersion of charge waves by the avoided crossing between the two dispersion lines of polaritons. Similarly to the acoustic and the optical phonons and far from the resonance one branch is photon-like while the other charge wave-like. Mathematically the Hopfield dielectric for the one mode of excitation is equivalent to the Trojan wave packet in the harmonic approximation. The Hopfield model of the dielectric predicts the existence of eternal trapped frozen photons similar to the Hawking radiation inside the matter with the density proportional to the strength of the matter-field coupling.

Brillouin spectroscopy is an empirical spectroscopy technique which allows the determination of elastic moduli of materials. The technique uses inelastic scattering of light when it encounters acoustic phonons in a crystal, a process known as Brillouin scattering, to determine phonon energies and therefore interatomic potentials of a material. The scattering occurs when an electromagnetic wave interacts with a density wave, photon-phonon scattering.

The Planck relation is a fundamental equation in quantum mechanics which states that the energy of a photon, E, known as photon energy, is proportional to its frequency, ν:

References

  1. F. A. Jenkins and H. E. White (1957). Fundamentals of optics . New York: McGraw-Hill. p.  223. ISBN   0-07-032330-5.
  2. R. A. Serway, C. J. Moses and C. A. Moyer (1989). Modern Physics. Philadelphia: Saunders. p. 118. ISBN   0-534-49340-8.
  3. R. G. Dean and R. A. Dalrymple (1991). Water wave mechanics for engineers and scientists. Advanced Series on Ocean Engineering. Vol. 2. World Scientific, Singapore. ISBN   978-981-02-0420-4. See page 64–66.
  4. P. M. Jones, G. M. Rackham and J. W. Steeds (1977). "Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination". Proceedings of the Royal Society. A 354 (1677): 197. Bibcode:1977RSPSA.354..197J. doi:10.1098/rspa.1977.0064. S2CID   98158162.
  5. Westfall, Richard S. (1983). Never at Rest: A Biography of Isaac Newton (illustrated, revised ed.). Cambridge University. p.  276. ISBN   9780521274357.
  6. A. D. D. Craik (2004). "The origins of water wave theory". Annual Review of Fluid Mechanics. 36: 1–28. Bibcode:2004AnRFM..36....1C. doi:10.1146/annurev.fluid.36.050802.122118.
  7. John S. Toll (1956). "Causality and the dispersion relation: Logical foundations". Phys. Rev. 104 (6): 1760–1770. Bibcode:1956PhRv..104.1760T. doi:10.1103/PhysRev.104.1760.