Diuranium pentoxide

Last updated
Diuranium pentoxide
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
Properties
U2O5
Molar mass 556.055 g/mol
Appearanceblack crystal
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Diuranium pentoxide (uranium(V) oxide) is an inorganic chemical compound of uranium and oxygen. [1]

Related Research Articles

The actinoid series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinoid series derives its name from the first element in the series, actinium. The informal chemical symbol An is used in general discussions of actinoid chemistry to refer to any actinoid.

Main-group element A set of elements consisting of Groups 1, 2 and 13 to 18 in the periodic table

In chemistry and atomic physics, the main group is the group of elements whose lightest members are represented by helium, lithium, beryllium, boron, carbon, nitrogen, oxygen, and fluorine as arranged in the periodic table of the elements. The main group includes the elements in groups 1 and 2 (s-block), and groups 13 to 18 (p-block). The s-block elements are primarily characterised by one main oxidation state, and the p-block elements, when they have multiple oxidation states, often have common oxidation states separated by two units.

Neptunium Chemical element with atomic number 93

Neptunium is a chemical element with the symbol Np and atomic number 93. A radioactive actinide metal, neptunium is the first transuranic element. Its position in the periodic table just after uranium, named after the planet Uranus, led to it being named after Neptune, the next planet beyond Uranus. A neptunium atom has 93 protons and 93 electrons, of which seven are valence electrons. Neptunium metal is silvery and tarnishes when exposed to air. The element occurs in three allotropic forms and it normally exhibits five oxidation states, ranging from +3 to +7. It is radioactive, poisonous, pyrophoric, and capable of accumulating in bones, which makes the handling of neptunium dangerous.

Protactinium Chemical element with atomic number 91

Protactinium is a chemical element with the symbol Pa and atomic number 91. It is a dense, silvery-gray actinide metal which readily reacts with oxygen, water vapor and inorganic acids. It forms various chemical compounds in which protactinium is usually present in the oxidation state +5, but it can also assume +4 and even +3 or +2 states. Concentrations of protactinium in the Earth's crust are typically a few parts per trillion, but may reach up to a few parts per million in some uraninite ore deposits. Because of its scarcity, high radioactivity and high toxicity, there are currently no uses for protactinium outside scientific research, and for this purpose, protactinium is mostly extracted from spent nuclear fuel.

Uranium Chemical element with atomic number 92

Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weakly radioactive because all isotopes of uranium are unstable; the half-lives of its naturally occurring isotopes range between 159,200 years and 4.5 billion years. The most common isotopes in natural uranium are uranium-238 and uranium-235. Uranium has the highest atomic weight of the primordially occurring elements. Its density is about 70% higher than that of lead, and slightly lower than that of gold or tungsten. It occurs naturally in low concentrations of a few parts per million in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite.

Uraninite Uranium-rich oxide mineral

Uraninite, formerly pitchblende, is a radioactive, uranium-rich mineral and ore with a chemical composition that is largely UO2, but due to oxidation the mineral typically contains variable proportions of U3O8. Additionally, due to radioactive decay, the ore also contains oxides of lead and trace amounts of helium. It may also contain thorium and rare earth elements.

Uranium hexafluoride chemical compound

Uranium hexafluoride (UF6), colloquially known as "hex" in the nuclear industry, is a compound used in the process of enriching uranium, which produces fuel for nuclear reactors and was used in the past for nuclear weapons, which are now fabricated with plutonium.

Yellowcake Uranium concentrate powder

Yellowcake is a type of uranium concentrate powder obtained from leach solutions, in an intermediate step in the processing of uranium ores. It is a step in the processing of uranium after it has been mined but before fuel fabrication or uranium enrichment. Yellowcake concentrates are prepared by various extraction and refining methods, depending on the types of ores. Typically, yellowcakes are obtained through the milling and chemical processing of uranium ore, forming a coarse powder that has a pungent odor, is insoluble in water, and contains about 80% uranium oxide, which melts at approximately 2880 °C.

Thorium dioxide Chemical compound

Thorium dioxide (ThO2), also called thorium(IV) oxide, is a crystalline solid, often white or yellow in color. Also known as thoria, it is produced mainly as a by-product of lanthanide and uranium production. Thorianite is the name of the mineralogical form of thorium dioxide. It is moderately rare and crystallizes in an isometric system. The melting point of thorium oxide is 3300 °C – the highest of all known oxides. Only a few elements (including tungsten and carbon) and a few compounds (including tantalum carbide) have higher melting points. All thorium compounds are radioactive because there are no stable isotopes of thorium.

Triuranium octoxide

Triuranium octoxide (U3O8) is a compound of uranium. It is present as an olive green to black, odorless solid. It is one of the more popular forms of yellowcake and is shipped between mills and refineries in this form.

Uranium dioxide chemical compound

Uranium dioxide or uranium(IV) oxide (UO2), also known as urania or uranous oxide, is an oxide of uranium, and is a black, radioactive, crystalline powder that naturally occurs in the mineral uraninite. It is used in nuclear fuel rods in nuclear reactors. A mixture of uranium and plutonium dioxides is used as MOX fuel. Prior to 1960, it was used as yellow and black color in ceramic glazes and glass.

Uranium trioxide oxide of uranium

Uranium trioxide (UO3), also called uranyl oxide, uranium(VI) oxide, and uranic oxide, is the hexavalent oxide of uranium. The solid may be obtained by heating uranyl nitrate to 400 °C. Its most commonly encountered polymorph, γ-UO3, is a yellow-orange powder.

Uranium tetrafluoride chemical compound

Uranium tetrafluoride (UF4) is a green crystalline solid compound of uranium with an insignificant vapor pressure and very slight solubility in water. Uranium in its tetravalent (uranous) state is very important in different technological processes. In the uranium refining industry it is known as green salt.

Ammonium diuranate chemical compound

Ammonium diuranate or (ADU) ((NH4)2U2O7), is one of the radioactive intermediate chemical forms of uranium produced during yellowcake production. The name "yellowcake" originally given to this bright yellow substance, now applies to mixtures of uranium oxides which are actually hardly ever yellow. It also is an intermediate in mixed-oxide (MOX) fuel fabrication.

Uranate any chemical compound having an oxyanion with at least one atom of uranium

A uranate is a ternary oxide involving the element uranium in one of the oxidation states 4, 5 or 6. A typical chemical formula is MxUyOz, where M represents a cation. The uranium atom in uranates(VI) has two short collinear U–O bonds and either four or six more next nearest oxygen atoms. The structures are infinite lattice structures with the uranium atoms linked by bridging oxygen atoms.

Uranyl fluoride chemical compound

Uranyl fluoride (UO2F2), a compound of uranium, is an intermediate in the conversion of uranium hexafluoride UF6 to a uranium oxide or metal form and is a direct product of the reaction of UF6 with moisture in the air. It is very soluble in water. Uranyl fluoride also is hygroscopic and changes in color from brilliant orange to yellow after reacting with water. Uranyl fluoride is reported to be stable in air to 300 °C, above which slow decomposition to U3O8 occurs. When heated to decomposition, UO2F2 emits toxic fluorine fumes.

Uranium tetrabromide chemical compound

Uranium tetrabromide is an inorganic chemical compound of uranium in oxidation state +4.

Uranium disulfide is an inorganic chemical compound of uranium in oxidation state +4 and sulfides in -2. It is radioactive.

Uranium pentaiodide is a hypothetical compound of uranium and iodine. In it, uranium has oxidation state +5. UI5 has never been prepared.

Actinide chemistry branch of nuclear chemistry

Actinide chemistry is one of the main branches of nuclear chemistry that investigates the processes and molecular systems of the actinides. The actinides derive their name from the group 3 element actinium. The informal chemical symbol An is used in general discussions of actinide chemistry to refer to any actinide. All but one of the actinides are f-block elements, corresponding to the filling of the 5f electron shell; lawrencium, a d-block element, is also generally considered an actinide. In comparison with the lanthanides, also mostly f-block elements, the actinides show much more variable valence. The actinide series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium.

References

  1. Alberman, K. B.; Anderson, J. S. (1949). "S 62. The oxides of uranium". Journal of the Chemical Society (Resumed): S303. doi:10.1039/JR949000S303.