Double groupoid

Last updated

In mathematics, especially in higher-dimensional algebra and homotopy theory, a double groupoid generalises the notion of groupoid and of category to a higher dimension.

Contents

Definition

A double groupoidD is a higher-dimensional groupoid involving a relationship for both `horizontal' and `vertical' groupoid structures. [1] (A double groupoid can also be considered as a generalization of certain higher-dimensional groups. [2] ) The geometry of squares and their compositions leads to a common representation of a double groupoid in the following diagram:

Dgpd8fdp02.jpg

where M is a set of 'points', H and V are, respectively, 'horizontal' and 'vertical' groupoids, and S is a set of 'squares' with two compositions. The composition laws for a double groupoid D make it also describable as a groupoid internal to the category of groupoids.

Given two groupoids H and V over a set M, there is a double groupoid with H,V as horizontal and vertical edge groupoids, and squares given by quadruples

for which one assumes always that h, h′ are in H and v, v′ are in V, and that the initial and final points of these edges match in M as suggested by the notation; that is for example sh = sv, th = sv', ..., etc. The compositions are to be inherited from those of H,V; that is:

and

This construction is the right adjoint to the forgetful functor which takes the double groupoid as above, to the pair of groupoids H,V over M.

Other related constructions are that of a double groupoid with connection [3] and homotopy double groupoids. [4] The homotopy double groupoid of a pair of pointed spaces is a key element of the proof of a two-dimensional Seifert-van Kampen Theorem, first proved by Brown and Higgins in 1978, [5] and given an extensive treatment in the book. [6]

Examples

An easy class of examples can be cooked up by considering crossed modules, or equivalently the data of a morphism of groups

which has an equivalent description as the groupoid internal to the category of groups

where

are the structure morphisms for this groupoid. Since groups embed in the category of groupoids sending a group to the category with a single object and morphisms giving the group , the structure above gives a double groupoid. Let's give an explicit example: from the group extension

and the embedding of , there is an associated double groupoid from the two term complex of groups

with kernel is and cokernel is given by . This gives an associated homotopy type [7] with

and

Its postnikov invariant can be determined by the class of in the group cohomology group . Because this is not a trivial crossed-module, it's postnikov invariant is , giving a homotopy type which is not equivalent to the geometric realization of a simplicial abelian group.

Homotopy double groupoid

A generalisation to dimension 2 of the fundamental groupoid on a set of base was given by Brown and Higgins in 1978 as follows. Let be a triple of spaces, i.e. . Define to be the set of homotopy classes rel vertices of maps of a square into X which take the edges into A and the vertices into C. It is not entirely trivial to prove that the natural compositions of such squares in two directions are inherited by these homotopy classes to give a double groupoid, which also has an extra structure of so-called connections necessary to discuss the idea of commutative cube in a double groupoid. This double groupoid is used in an essential way to prove a two-dimensional Seifert-van Kampen theorem, which gives new information and computations on second relative homotopy groups as part of a crossed module. For more information, see Part I of the book by Brown, Higgins, Sivera listed below.

Convolution algebra

A convolution C*-algebra of a double groupoid can also be constructed by employing the square diagram D of a double groupoid. [8]

Double groupoid category

The category whose objects are double groupoids and whose morphisms are double groupoid homomorphisms that are double groupoid diagram (D) functors is called the double groupoid category, or the category of double groupoids.

See also

Notes

  1. Brown, Ronald and C.B. Spencer: "Double groupoids and crossed modules", Cahiers Top. Geom. Diff.. 17 (1976), 343–362
  2. Brown, Ronald, Higher-dimensional group theory Archived 2012-07-23 at archive.today explains how the groupoid concept has led to higher-dimensional homotopy groupoids, having applications in homotopy theory and in group cohomology
  3. http://planetphysics.org/encyclopedia/DoubleGroupoidWithConnection.html%5B%5D Double Groupoid with Connection
  4. Brown, R., Hardie, K., Kamps, H. and T. Porter: 2002, "The homotopy double groupoid of a Hausdorff space.", Theory and Applications of Categories: 10, 71–93
  5. Brown, R. and Higgins, P.J. "On the connection between the second relative homotopy groups of some related spaces". _Proc. London Math. Soc._ (3) (36)(1978) 193–212
  6. R. Brown, P.J. Higgins, R. Sivera, Nonabelian algebraic topology: filtered spaces, crossed complexes, cubical homotopy groupoids, EMS Tracts in Mathematics Vol. 15, 703 pages. (August 2011).
  7. Cegarra, Antonio M.; Heredia, Benjamín A.; Remedios, Josué (2010-03-19). "Double groupoids and homotopy 2-types". arXiv: 1003.3820 [math.AT].
  8. http://planetphysics.org/encyclopedia/DoubleGroupoidGeometry.html%5B%5D Double Groupoid Geometry

This article incorporates material from higher dimensional algebra on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

Related Research Articles

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

<span class="mw-page-title-main">Algebraic topology</span> Branch of mathematics

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.

In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.

A CW complex is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation. The C stands for "closure-finite", and the W for "weak" topology.

In mathematics, the Seifert–Van Kampen theorem of algebraic topology, sometimes just called Van Kampen's theorem, expresses the structure of the fundamental group of a topological space in terms of the fundamental groups of two open, path-connected subspaces that cover . It can therefore be used for computations of the fundamental group of spaces that are constructed out of simpler ones.

In mathematics, the Eckmann–Hilton argument is an argument about two unital magma structures on a set where one is a homomorphism for the other. Given this, the structures are the same, and the resulting magma is a commutative monoid. This can then be used to prove the commutativity of the higher homotopy groups. The principle is named after Beno Eckmann and Peter Hilton, who used it in a 1962 paper.

In mathematics, a gerbe is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them.

In mathematics, specifically in homotopy theory, a classifying spaceBG of a topological group G is the quotient of a weakly contractible space EG by a proper free action of G. It has the property that any G principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle . As explained later, this means that classifying spaces represent a set-valued functor on the homotopy category of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly used notion of classifying space up to homotopy.

In mathematics, and especially in homotopy theory, a crossed module consists of groups and , where acts on by automorphisms (which we will write on the left, , and a homomorphism of groups

In mathematics, equivariant cohomology is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space with action of a topological group is defined as the ordinary cohomology ring with coefficient ring of the homotopy quotient :

In mathematics, especially (higher) category theory, higher-dimensional algebra is the study of categorified structures. It has applications in nonabelian algebraic topology, and generalizes abstract algebra.

In mathematics, an n-group, or n-dimensional higher group, is a special kind of n-category that generalises the concept of group to higher-dimensional algebra. Here, may be any natural number or infinity. The thesis of Alexander Grothendieck's student Hoàng Xuân Sính was an in-depth study of 2-groups under the moniker 'gr-category'.

In mathematics, particularly the branch called category theory, a 2-group is a groupoid with a way to multiply objects, making it resemble a group. They are part of a larger hierarchy of n-groups. They were introduced by Hoàng Xuân Sính in the late 1960s under the name gr-categories, and they are also known as categorical groups.

In mathematics, R-algebroids are constructed starting from groupoids. These are more abstract concepts than the Lie algebroids that play a similar role in the theory of Lie groupoids to that of Lie algebras in the theory of Lie groups..

In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets. It is an ∞-category generalization of a groupoid, a category in which every morphism is an isomorphism.

In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of simple objects, and simple objects are those that do not contain non-trivial proper sub-objects. The precise definitions of these words depends on the context.

In mathematics, nonabelian algebraic topology studies an aspect of algebraic topology that involves higher-dimensional algebras.

In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is learned as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and category theory (specifically the study of higher categories).

In mathematics, an Abelian 2-group is a higher dimensional analogue of an Abelian group, in the sense of higher algebra, which were originally introduced by Alexander Grothendieck while studying abstract structures surrounding Abelian varieties and Picard groups. More concretely, they are given by groupoids which have a bifunctor which acts formally like the addition an Abelian group. Namely, the bifunctor has a notion of commutativity, associativity, and an identity structure. Although this seems like a rather lofty and abstract structure, there are several examples of Abelian 2-groups. In fact, some of which provide prototypes for more complex examples of higher algebraic structures, such as Abelian n-groups.

References