Drofenine

Last updated
Drofenine
Drofenine structure.svg
Identifiers
  • 2-(diethylamino)ethyl 2-cyclohexyl-2-phenylacetate
CAS Number
PubChem CID
ChemSpider
UNII
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.114.553 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C20H25NO3
Molar mass 327.424 g·mol−1
3D model (JSmol)
  • CCN(CC)CCOC(=O)C(C1CCCCC1)C2=CC=CC=C2
  • InChI=1S/C20H31NO2/c1-3-21(4-2)15-16-23-20(22)19(17-11-7-5-8-12-17)18-13-9-6-10-14-18/h5,7-8,11-12,18-19H,3-4,6,9-10,13-16H2,1-2H3
  • Key:AGJBLWCLQCKRJP-UHFFFAOYSA-N

Drofenine is an antimuscarinic antispasmodic drug used for relaxing smooth muscle, thereby treating conditions, such as: dysmenorrhea, and pain in the gastrointestinal tract, biliary passages, and urogenital tract. Drofenine is assumed to work by increasing the levels of the protein TRPV3. [1] [2] [3]

Related Research Articles

Transient receptor potential channels are a group of ion channels located mostly on the plasma membrane of numerous animal cell types. Most of these are grouped into two broad groups: Group 1 includes TRPC, TRPV, TRPVL, TRPM, TRPS, TRPN, and TRPA. Group 2 consists of TRPP and TRPML. Other less-well categorized TRP channels exist, including yeast channels and a number of Group 1 and Group 2 channels present in non-animals. Many of these channels mediate a variety of sensations such as pain, temperature, different kinds of tastes, pressure, and vision. In the body, some TRP channels are thought to behave like microscopic thermometers and used in animals to sense hot or cold. Some TRP channels are activated by molecules found in spices like garlic (allicin), chili pepper (capsaicin), wasabi ; others are activated by menthol, camphor, peppermint, and cooling agents; yet others are activated by molecules found in cannabis or stevia. Some act as sensors of osmotic pressure, volume, stretch, and vibration. Most of the channels are activated or inhibited by signaling lipids and contribute to a family of lipid-gated ion channels.

<span class="mw-page-title-main">TRPV6</span>

TRPV6 is a membrane calcium (Ca2+) channel protein which is particularly involved in the first step in Ca2+absorption in the intestine.

The endocannabinoid system (ECS) is a biological system composed of endocannabinoids, which are endogenous lipid-based retrograde neurotransmitters that bind to cannabinoid receptors (CBRs), and cannabinoid receptor proteins that are expressed throughout the vertebrate central nervous system and peripheral nervous system. The endocannabinoid system remains under preliminary research, but may be involved in regulating physiological and cognitive processes, including fertility, pregnancy, pre- and postnatal development, various activity of immune system, appetite, pain-sensation, mood, and memory, and in mediating the pharmacological effects of cannabis. The ECS plays an important role in multiple aspects of neural functions, including the control of movement and motor coordination, learning and memory, emotion and motivation, addictive-like behavior and pain modulation, among others.

<span class="mw-page-title-main">Ruthenium red</span> Chemical compound

The inorganic dye ammoniated ruthenium oxychloride, also known as ruthenium red, is used in histology to stain aldehyde fixed mucopolysaccharides.

<span class="mw-page-title-main">TRPV1</span> Receptor responsible for regulation of body temperature

The transient receptor potential cation channel subfamily V member 1 (TrpV1), also known as the capsaicin receptor and the vanilloid receptor 1, is a protein that, in humans, is encoded by the TRPV1 gene. It was the first isolated member of the transient receptor potential vanilloid receptor proteins that in turn are a sub-family of the transient receptor potential protein group. This protein is a member of the TRPV group of transient receptor potential family of ion channels.

<span class="mw-page-title-main">TRPV</span> Subgroup of TRP cation channels named after the vanilloid receptor

TRPV is a family of transient receptor potential cation channels in animals. All TRPVs are highly calcium selective.

<span class="mw-page-title-main">TRPV2</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel subfamily V member 2 is a protein that in humans is encoded by the TRPV2 gene. TRPV2 is a nonspecific cation channel that is a part of the TRP channel family. This channel allows the cell to communicate with its extracellular environment through the transfer of ions, and responds to noxious temperatures greater than 52 °C. It has a structure similar to that of potassium channels, and has similar functions throughout multiple species; recent research has also shown multiple interactions in the human body.

<span class="mw-page-title-main">TRPV4</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel subfamily V member 4 is an ion channel protein that in humans is encoded by the TRPV4 gene.

<span class="mw-page-title-main">TRPM8</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8), also known as the cold and menthol receptor 1 (CMR1), is a protein that in humans is encoded by the TRPM8 gene. The TRPM8 channel is the primary molecular transducer of cold somatosensation in humans. In addition, mints can desensitize a region through the activation of TRPM8 receptors.

<span class="mw-page-title-main">TRPV3</span>

Transient receptor potential cation channel, subfamily V, member 3, also known as TRPV3, is a human gene encoding the protein of the same name.

<span class="mw-page-title-main">TRPV5</span>

Transient receptor potential cation channel subfamily V member 5 is a calcium channel protein that in humans is encoded by the TRPV5 gene.

<i>N</i>-Arachidonoyl dopamine Chemical compound

N-Arachidonoyl dopamine (NADA) is an endocannabinoid that acts as an agonist of the CB1 receptor and the transient receptor potential V1 (TRPV1) ion channel. NADA was first described as a putative endocannabinoid (agonist for the CB1 receptor) in 2000 and was subsequently identified as an endovanilloid (agonist for TRPV1) in 2002. NADA is an endogenous arachidonic acid based lipid found in the brain of rats, with especially high concentrations in the hippocampus, cerebellum, and striatum. It activates the TRPV1 channel with an EC50 of approximately of 50 nM which makes it the putative endogenous TRPV1 agonist.

<span class="mw-page-title-main">Arachidonoyl serotonin</span> Chemical compound

Arachidonoyl serotonin is an endogenous lipid signaling molecule. It was first described in 1998 as being an inhibitor of fatty acid amide hydrolase (FAAH). In 2007, it was shown to have analgesic properties and to act as an antagonist of the TRPV1 receptor. In 2011, it was shown to be present in the ileum and jejunum of the gastrointestinal tract and modulate glucagon-like peptide-1 (GLP-1) secretion. In addition to this, in 2016, AA-5-HT was also found to affect the signaling mechanisms responsible for anxiety, by inhibiting dopamine release from the Basolateral amygdala following fear behavior. In 2017, AA-5-HT was tested in its effects on the sleep wake cycle, where it was found to affect the sleep homeostasis when used in conjunction with molecules and chemicals that affect wake-related neurotransmitters.

<span class="mw-page-title-main">Phenylacetylrinvanil</span>

Phenylacetylrinvanil (IDN-5890) is a synthetic analogue of capsaicin which acts as a potent and selective agonist for the TRPV1 receptor, with slightly lower potency than resiniferatoxin, though still around 300 times the potency of capsaicin. It is an amide of vanillylamine and ricinoleic acid, with the hydroxyl group on ricinoleic acid esterified with phenylacetic acid. It is used to study the function of the TRPV1 receptor and its downstream actions, and has also shown anti-cancer effects in vitro.

<span class="mw-page-title-main">GRC-6211</span> Chemical compound

GRC-6211 is a drug developed by Glenmark Pharmaceuticals which acts as a potent and selective antagonist for the TRPV1 receptor. It has analgesic and antiinflammatory effects and reached Phase IIb human trials, but was ultimately discontinued from development as a medicine, though it continues to have applications in scientific research.

<span class="mw-page-title-main">GSK1016790A</span>

GSK1016790A is a drug developed by GlaxoSmithKline which acts as a potent and selective agonist for the TRPV4 receptor. It has been used to study the role of TRPV4 receptors in the function of smooth muscle tissue, particularly that lining blood vessels, lymphatic system, and the bladder.

<span class="mw-page-title-main">AMG-9810</span>

AMG-9810 is a drug which acts as a potent and selective antagonist for the TRPV1 receptor. It has analgesic and antiinflammatory effects and is used in scientific research, but has not been developed for medical use. It has high antagonist potency and good bioavailability and pharmacokinetics, and so has been used to study the role of TRPV1 in areas other than pain perception, such as its roles in the brain.

<span class="mw-page-title-main">HC-067047</span>

HC-067047 is a drug which acts as a potent and selective antagonist for the TRPV4 receptor. It has been used to investigate the role of TRPV4 receptors in a number of areas, such as regulation of blood pressure, bladder function and some forms of pain, as well as neurological functions.

<span class="mw-page-title-main">AMG-517</span>

AMG-517 is a drug which acts as a potent and selective blocker of the TRPV1 ion channel. It was developed as a potential treatment for chronic pain, but while it was an effective analgesic in animal studies it was dropped from human clinical trials at Phase I due to producing hyperthermia as a side effect, as well as poor water solubility. It is still used in scientific research into the function of the TRPV1 channel and its role in pain and inflammation, and has been used as a template for the design of several newer analogues which have improved properties.

<span class="mw-page-title-main">SB-705498</span>

SB-705498 is a drug which acts as a potent and selective blocker of the TRPV1 ion channel. It has been evaluated in clinical trials for the treatment of rhinitis and chronic cough.

References

  1. Kunysz EL, Michel AD, Whiting RL (March 1988). "Functional and direct binding studies using subtype selective muscarinic receptor antagonists". British Journal of Pharmacology. 93 (3): 491–500. doi:10.1111/j.1476-5381.1988.tb10303.x. PMC   1853838 . PMID   2897216.
  2. Bodur E, Cokuğraş AN, Tezcan EF (February 2001). "Inhibition effects of benactyzine and drofenine on human serum butyrylcholinesterase". Archives of Biochemistry and Biophysics. 386 (1): 25–9. doi:10.1006/abbi.2000.2188. PMID   11360997.
  3. Deering-Rice CE, Mitchell VK, Romero EG, Abdel Aziz MH, Ryskamp DA, Križaj D, et al. (October 2014). "Drofenine: A 2-APB Analogue with Greater Selectivity for Human TRPV3". Pharmacology Research & Perspectives. 2 (5): e00062. doi:10.1002/prp2.62. PMC   4115637 . PMID   25089200.