Electret microphone

Last updated
Electret microphone capsules Electret condenser microphone capsules.jpg
Electret microphone capsules
This typical electret microphone circuit has a common source configured JFET inside the two-terminal electret capsule. The JFET is externally-powered by the DC voltage V+ through a resistor which sets the gain and output impedance. The output audio signal is received though a DC blocking capacitor. Electret condenser microphone schematic.png
This typical electret microphone circuit has a common source configured JFET inside the two-terminal electret capsule. The JFET is externally-powered by the DC voltage V+ through a resistor which sets the gain and output impedance. The output audio signal is received though a DC blocking capacitor.

An electret microphone is a microphone whose diaphragm forms a capacitor (historically-termed a condenser) that incorporates an electret. The electret's permanent electric dipole provides a constant charge Q on the capacitor. Sound waves move the diaphragm, changing the capacitance C, which produces a corresponding voltage change across the capacitor of ΔV = Q/ΔC. [1] The electret's constant charge eliminates the need for the polarizing power supply required for non-electret condenser microphones, though a preamplifier is typically incorporated to boost the audio voltage signal.

Contents

Electret material

An electret is a stable dielectric material with a permanently-embedded electric dipole that persists for hundreds of years due to its high resistance and chemical stability. The name comes from electrostatic and magnet; drawing analogy to the formation of a magnet by alignment of magnetic domains in a piece of iron. Electrets are commonly made by first melting a suitable dielectric material such as a plastic or wax that contains polar molecules, and then allowing the dielectric to re-solidify in a powerful electrostatic field. The polar molecules of the dielectric align themselves to the direction of the electrostatic field, producing a permanent electrostatic "bias".

History

Electret materials have been known since the 1920s and were proposed as condenser microphone elements several times, but they were considered impractical until the foil electret type was invented at Bell Laboratories in 1961 by Gerhard Sessler and James West, using a thin metallized Teflon foil. [2] [3] [4] This became the most common type, used in many applications from high-quality recording and lavalier use to built-in microphones in small sound recording devices and telephones. Modern electret microphones use PTFE plastic, either in film or solute form, to form the electret.

Types

There are three major types of electret microphones, differing in the way the electret material is used:

Foil-type or diaphragm-type
A film of electret material is used as the diaphragm itself. This is the most common construction. It is often considered the lowest quality, as the electret material used sometimes does not make a particularly good diaphragm. Modern materials have enabled very comparable performance to other designs.
Back electret
An electret film is applied to the back plate of the microphone capsule and the diaphragm is made of an uncharged material, which may be mechanically more suitable for the transducer design being realized.
Front electret
This design features no back plate, and the capacitor is formed by the diaphragm and the inside surface of the capsule. The electret film is adhered to the inside front cover and the metalized diaphragm is connected to the input of the FET (field-effect transistor). It is equivalent to the back electret in that any conductive film may be used for the diaphragm.

Electret microphones require no polarizing voltage unlike other condenser microphones, but normally contain an integrated preamplifier which requires a small amount of power (often incorrectly called polarizing power or bias). This preamp is frequently phantom powered in sound reinforcement and studio applications. Other types include a 1.5 V battery in the microphone housing, which is often left permanently connected as the current drain is usually very small.

Notes

  1. Rose, Bruce (2019-01-08). "Comparing MEMS and Electret Condenser (ECM) Microphones". CUI Devices . Archived from the original on 2024-02-07. Retrieved 2024-05-17.
  2. Ainissa Ramirez (2022-02-07). "Jim West's marvellous microphone". Chemistry World . Royal Society of Chemistry . Retrieved 2022-02-24.
  3. "Patent US3118979: Electrostatic transducer" (PDF). www.freepatentsonline.com. United States Patent Office. Retrieved 12 April 2016.
  4. Juang, Lynn. "Foil Electret Microphone: Sessler & West (1960)". Bell Labs, Multimedia Communications Research Laboratory. Archived from the original on February 4, 2012. Retrieved 19 January 2009.

Related Research Articles

<span class="mw-page-title-main">Dielectric</span> Electrically insulating substance able to be polarised by an applied electric field

In electromagnetism, a dielectric is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor, because they have no loosely bound, or free, electrons that may drift through the material, but instead they shift, only slightly, from their average equilibrium positions, causing dielectric polarisation. Because of dielectric polarisation, positive charges are displaced in the direction of the field and negative charges shift in the direction opposite to the field. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarised, but also reorient so that their symmetry axes align to the field.

<span class="mw-page-title-main">Microphone</span> Device that converts sound into an electrical signal

A microphone, colloquially called a mic, or mike, is a transducer that converts sound into an electrical signal. Microphones are used in many applications such as telephones, hearing aids, public address systems for concert halls and public events, motion picture production, live and recorded audio engineering, sound recording, two-way radios, megaphones, and radio and television broadcasting. They are also used in computers and other electronic devices, such as mobile phones, for recording sounds, speech recognition, VoIP, and other purposes, such as ultrasonic sensors or knock sensors.

<span class="mw-page-title-main">Tweeter</span> Type of loudspeaker

A tweeter or treble speaker is a special type of loudspeaker that is designed to produce high audio frequencies, typically deliver high frequencies up to 100 kHz. The name is derived from the high pitched sounds made by some birds (tweets), especially in contrast to the low woofs made by many dogs, after which low-frequency drivers are named (woofers).

<span class="mw-page-title-main">Phantom power</span> DC power through microphone cables

Phantom power, in the context of professional audio equipment, is DC electric power equally applied to both signal wires in balanced microphone cables, forming a phantom circuit, to operate microphones that contain active electronic circuitry. It is best known as a convenient power source for condenser microphones, though many active direct boxes also use it. The technique is also used in other applications where power supply and signal communication take place over the same wires.

<span class="mw-page-title-main">Preamplifier</span> Electronic amplifier that converts weak signal into strong signal

A preamplifier, also known as a preamp, is an electronic amplifier that converts a weak electrical signal into an output signal strong enough to be noise-tolerant and strong enough for further processing, or for sending to a power amplifier and a loudspeaker. Without this, the final signal would be noisy or distorted. They are typically used to amplify signals from analog sensors such as microphones and pickups. Because of this, the preamplifier is often placed close to the sensor to reduce the effects of noise and interference.

<span class="mw-page-title-main">Electrolytic capacitor</span> Type of capacitor

An electrolytic capacitor is a polarized capacitor whose anode or positive plate is made of a metal that forms an insulating oxide layer through anodization. This oxide layer acts as the dielectric of the capacitor. A solid, liquid, or gel electrolyte covers the surface of this oxide layer, serving as the cathode or negative plate of the capacitor. Because of their very thin dielectric oxide layer and enlarged anode surface, electrolytic capacitors have a much higher capacitance-voltage (CV) product per unit volume than ceramic capacitors or film capacitors, and so can have large capacitance values. There are three families of electrolytic capacitor: aluminium electrolytic capacitors, tantalum electrolytic capacitors, and niobium electrolytic capacitors.

<span class="mw-page-title-main">Electret</span> Object with trapped electrical charge

An electret is a dielectric material that has a quasi-permanent electrical polarisation. An electret has internal and external electric fields, and is the electrostatic equivalent of a permanent magnet.

<span class="mw-page-title-main">Electric displacement field</span> Vector field related to displacement current and flux density

In physics, the electric displacement field or electric induction is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field, combining the two in an auxiliary field. It plays a major role in topics such as the capacitance of a material, as well the response of dielectrics to electric field, and how shapes can change due to electric fields in piezoelectricity or flexoelectricity as well as the creation of voltages and charge transfer due to elastic strains.

<span class="mw-page-title-main">Pickup (music technology)</span> Captures vibrations produced by musical instruments

A pickup is a transducer that captures or senses mechanical vibrations produced by musical instruments, particularly stringed instruments such as the electric guitar, and converts these to an electrical signal that is amplified using an instrument amplifier to produce musical sounds through a loudspeaker in a speaker enclosure. The signal from a pickup can also be recorded directly.

<span class="mw-page-title-main">Variable capacitor</span> Capacitor whose capacitance can be changed

A variable capacitor is a capacitor whose capacitance may be intentionally and repeatedly changed mechanically or electronically. Variable capacitors are often used in L/C circuits to set the resonance frequency, e.g. to tune a radio, or as a variable reactance, e.g. for impedance matching in antenna tuners.

<span class="mw-page-title-main">Capacitor types</span> Manufacturing styles of an electronic device

Capacitors are manufactured in many styles, forms, dimensions, and from a large variety of materials. They all contain at least two electrical conductors, called plates, separated by an insulating layer (dielectric). Capacitors are widely used as parts of electrical circuits in many common electrical devices.

<span class="mw-page-title-main">Capacitor</span> Passive two-terminal electronic component that stores electrical energy in an electric field

In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term still encountered in a few compound names, such as the condenser microphone. It is a passive electronic component with two terminals.

A ferroelectret, also known as a piezoelectret, is a thin film of polymer foams, exhibiting piezoelectric and pyroelectric properties after electric charging. Ferroelectret foams usually consist of a cellular polymer structure filled with air. Polymer-air composites are elastically soft due to their high air content as well as due to the size and shape of the polymer walls. Their elastically soft composite structure is one essential key for the working principle of ferroelectrets, besides the permanent trapping of electric charges inside the polymer voids. The elastic properties allow large deformations of the electrically charged voids. However, the composite structure can also possibly limit the stability and consequently the range of applications.

<span class="mw-page-title-main">Ceramic capacitor</span> Fixed-value capacitor using ceramic

A ceramic capacitor is a fixed-value capacitor where the ceramic material acts as the dielectric. It is constructed of two or more alternating layers of ceramic and a metal layer acting as the electrodes. The composition of the ceramic material defines the electrical behavior and therefore applications. Ceramic capacitors are divided into two application classes:

An electromagnetic diaphragm is a form of capacitive sensor used on an electronic stethoscope. The diaphragm is coated with a conductive material. A conductive plate is positioned behind and parallel to the diaphragm, so that the two conductive elements form a capacitor. Capacitance is a function of plate area, dielectric properties of the space between the conductors, and the distance between the conductors. It is this latter parameter which is modulated by vibration such that the capacitance varies with the distance between the electromagnetic diaphragm and the plate, forming an acoustic sensor.

<span class="mw-page-title-main">Applications of capacitors</span> Uses of capacitors in daily life

Capacitors have many uses in electronic and electrical systems. They are so ubiquitous that it is rare that an electrical product does not include at least one for some purpose. Capacitors allow only AC signals to pass when they are charged blocking DC signals. The main components of filters are capacitors. Capacitors have the ability to connect one circuit segment to another. Capacitors are used by Dynamic Random Access Memory (DRAM) devices to represent binary information as bits.

<span class="mw-page-title-main">Ferroelectric polymer</span> Group of crystalline polar polymers that are also ferroelectric

Ferroelectric polymers are a group of crystalline polar polymers that are also ferroelectric, meaning that they maintain a permanent electric polarization that can be reversed, or switched, in an external electric field.

Dielectric absorption is the name given to the effect by which a capacitor, that has been charged for a long time, discharges only incompletely when briefly discharged. Although an ideal capacitor would remain at zero volts after being discharged, real capacitors will develop a small voltage from time-delayed dipole discharging, a phenomenon that is also called dielectric relaxation, "soakage", or "battery action". For some dielectrics, such as many polymer films, the resulting voltage may be less than 1–2% of the original voltage, but it can be as much as 15% for electrolytic capacitors. The voltage at the terminals generated by the dielectric absorption may possibly cause problems in the function of an electronic circuit or can be a safety risk to personnel. In order to prevent shocks, most very large capacitors are shipped with shorting wires that need to be removed before they are used and/or permanently connected bleeder resistors. When disconnected at one or both ends, DC high-voltage cables can also "recharge themselves" to dangerous voltages.

<span class="mw-page-title-main">Film capacitor</span> Electrical capacitor with an insulating plastic film as the dielectric

Film capacitors, plastic film capacitors, film dielectric capacitors, or polymer film capacitors, generically called film caps as well as power film capacitors, are electrical capacitors with an insulating plastic film as the dielectric, sometimes combined with paper as carrier of the electrodes.

<span class="mw-page-title-main">Aluminum electrolytic capacitor</span> Type of capacitor

Aluminum electrolytic capacitors are (usually) polarized electrolytic capacitors whose anode electrode (+) is made of a pure aluminum foil with an etched surface. The aluminum forms a very thin insulating layer of aluminum oxide by anodization that acts as the dielectric of the capacitor. A non-solid electrolyte covers the rough surface of the oxide layer, serving in principle as the second electrode (cathode) (-) of the capacitor. A second aluminum foil called "cathode foil" contacts the electrolyte and serves as the electrical connection to the negative terminal of the capacitor.

References