Electric power conversion

Last updated

In all fields of electrical engineering, power conversion is the process of converting electric energy from one form to another. A power converter is an electrical or electro-mechanical device for converting electrical energy. A power converter can convert alternating current (AC) into direct current (DC) and vice versa; change the voltage or frequency of the current or do some combination of these. The power converter can be as simple as a transformer or it can be a far more complex system, such as a resonant converter. The term can also refer to a class of electrical machinery that is used to convert one frequency of alternating current into another. Power conversion systems often incorporate redundancy and voltage regulation.

Contents

Power converters are classified based on the type of power conversion they do. One way of classifying power conversion systems is based on whether the input and output are alternating current or direct current. Finally, the task of all power converters is to "process and control the flow of electrical energy by supplying voltages and currents in a form that is optimally suited for user loads". [1]

DC power conversion

DC to DC

The following devices can convert DC to DC:[ further explanation needed ]

DC to AC

The following devices can convert DC to AC:[ further explanation needed ]

AC power conversion

AC to DC

The following devices can convert AC to DC:[ further explanation needed ]

AC to AC

The following devices can convert AC to AC:[ further explanation needed ]

Other systems

There are also devices and methods to convert between power systems designed for single and three-phase operation.

The standard power voltage and frequency vary from country to country and sometimes within a country. In North America and northern South America, it is usually 120 volts, 60  hertz (Hz), but in Europe, Asia, Africa, and many other parts of the world, it is usually 230 volts, 50 Hz. [2] Aircraft often use 400 Hz power internally, so 50 Hz or 60 Hz to 400 Hz frequency conversion is needed for use in the ground power unit used to power the airplane while it is on the ground. Conversely, internal 400 Hz internal power may be converted to 50 Hz or 60 Hz for convenience power outlets available to passengers during flight.

Certain specialized circuits can also be considered power converters, such as the flyback transformer subsystem powering a CRT, generating high voltage at approximately 15 kHz.

Consumer electronics usually include an AC adapter (a type of power supply) to convert mains-voltage AC current to low-voltage DC suitable for consumption by microchips. Consumer voltage converters (also known as "travel converters") are used when traveling between countries that use ~120 V versus ~240 V AC mains power. (There are also consumer "adapters" which merely form an electrical connection between two differently shaped AC power plugs and sockets, but these change neither voltage nor frequency.)

Why use transformers in power converters

Transformers are used in power converters to incorporate electrical isolation and Voltage step-down or step up.

The secondary circuit is floating, when you touch the secondary circuit, you merely drag its potential to your body's potential or the earth's potential. There will be no current flowing through your body. That's why you can use your cellphone safely when it is being charged, even if your cellphone has a metal shell and is connected to the secondary circuit.

Operating at high frequency and supplying low power, power converters have much smaller transformers as compared with those of fundamental frequency, high power applications. Usually, in power systems, transformers transmit power simultaneously, no charge!

The current in the primary winding of a transformer help to sets up the mutual flux in accordance with Ampere's law and balances the demagnetizing effect of the load current in the secondary winding.

Flyback converter's transformer works differently, like an inductor. In each cycle, the flyback converter's transformer first gets charged and then releases its energy to the load. Accordingly, the flyback converter's transformer air gap has two functions. It not only determines inductance but also stores energy. For the flyback converter, the transformer gap can have the function of energy transmission through cycles of charging and discharging.

The core's relative permeability can be > 1,000, even > 10,000. While the air gap features much lower permeability, accordingly has higher energy density.

See also

Related Research Articles

<span class="mw-page-title-main">Uninterruptible power supply</span> Electrical device that uses batteries to prevent any interruption of power flow

An uninterruptible power supply (UPS) or uninterruptible power source is a type of continual power system that provides automated backup electric power to a load when the input power source or mains power fails. A UPS differs from a traditional auxiliary/emergency power system or standby generator in that it will provide near-instantaneous protection from input power interruptions by switching to energy stored in battery packs, supercapacitors or flywheels. The on-battery run-times of most UPSs are relatively short but sufficient to "buy time" for initiating a standby power source or properly shutting down the protected equipment. Almost all UPSs also contain integrated surge protection to shield the output appliances from voltage spikes.

<span class="mw-page-title-main">Rectifier</span> Electrical device that converts AC to DC

A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation is performed by an inverter.

<span class="mw-page-title-main">Mains electricity</span> Type of lower-voltage electricity most commonly provided by utilities

Mains electricity or utility power, power grid, domestic power, and wall power, or, in some parts of Canada, hydro, is a general-purpose alternating-current (AC) electric power supply. It is the form of electrical power that is delivered to homes and businesses through the electrical grid in many parts of the world. People use this electricity to power everyday items by plugging them into a wall outlet.

<span class="mw-page-title-main">Power supply</span> Electronic device that converts or regulates electric energy and supplies it to a load

A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a result, power supplies are sometimes referred to as electric power converters. Some power supplies are separate standalone pieces of equipment, while others are built into the load appliances that they power. Examples of the latter include power supplies found in desktop computers and consumer electronics devices. Other functions that power supplies may perform include limiting the current drawn by the load to safe levels, shutting off the current in the event of an electrical fault, power conditioning to prevent electronic noise or voltage surges on the input from reaching the load, power-factor correction, and storing energy so it can continue to power the load in the event of a temporary interruption in the source power.

<span class="mw-page-title-main">Power inverter</span> Device that changes direct current (DC) to alternating current (AC)

A power inverter, inverter, or invertor is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC). The resulting AC frequency obtained depends on the particular device employed. Inverters do the opposite of rectifiers which were originally large electromechanical devices converting AC to DC.

<span class="mw-page-title-main">Switched-mode power supply</span> Power supply with switching regulator

A switched-mode power supply (SMPS), also called switching-mode power supply, switch-mode power supply, switched power supply, or simply switcher, is an electronic power supply that incorporates a switching regulator to convert electrical power efficiently.

A DC-to-DC converter is an electronic circuit or electromechanical device that converts a source of direct current (DC) from one voltage level to another. It is a type of electric power converter. Power levels range from very low to very high.

<span class="mw-page-title-main">Voltage regulator</span> System designed to maintain a constant voltage

A voltage regulator is a system designed to automatically maintain a constant voltage. It may use a simple feed-forward design or may include negative feedback. It may use an electromechanical mechanism, or electronic components. Depending on the design, it may be used to regulate one or more AC or DC voltages.

<span class="mw-page-title-main">Power electronics</span> Technology of power electronics

Power electronics is the application of electronics to the control and conversion of electric power.

<span class="mw-page-title-main">Motor–generator</span> Device for converting electrical power to another form

A motor–generator is a device for converting electrical power to another form. Motor–generator sets are used to convert frequency, voltage, or phase of power. They may also be used to isolate electrical loads from the electrical power supply line. Large motor–generators were widely used to convert industrial amounts of power while smaller motor–generators were used to convert battery power to higher DC voltages.

<span class="mw-page-title-main">Rotary converter</span> Electrical machine

A rotary converter is a type of electrical machine which acts as a mechanical rectifier, inverter or frequency converter.

<span class="mw-page-title-main">Flyback transformer</span> High frequency pulse transformer, commonly used to drive cathode ray tubes

A flyback transformer (FBT), also called a line output transformer (LOPT), is a special type of electrical transformer. It was initially designed to generate high-voltage sawtooth signals at a relatively high frequency. In modern applications, it is used extensively in switched-mode power supplies for both low (3 V) and high voltage supplies.

<span class="mw-page-title-main">Welding power supply</span>

A welding power supply is a device that provides or modulates an electric current to perform arc welding. There are multiple arc welding processes ranging from Shielded Metal Arc Welding (SMAW) to inert shielding gas like Gas metal arc welding (GMAW) or Gas tungsten arc welding (GTAW). Welding power supplies primarily serve as devices that allow a welder to exercise control over whether current is alternating current (AC) or direct current (DC), as well as the amount of current and voltage.

<span class="mw-page-title-main">15 kV AC railway electrification</span> Standard current and voltage settings for much of Central Europes train transport

Railway electrification using alternating current (AC) at 15 kilovolts (kV) and 16.7 hertz (Hz) are used on transport railways in Germany, Austria, Switzerland, Sweden, and Norway. The high voltage enables high power transmission with the lower frequency reducing the losses of the traction motors that were available at the beginning of the 20th century. Railway electrification in late 20th century tends to use 25 kV, 50 Hz AC systems which has become the preferred standard for new railway electrifications but extensions of the existing 15 kV networks are not completely unlikely. In particular, the Gotthard Base Tunnel still uses 15 kV, 16.7 Hz electrification.

<span class="mw-page-title-main">Frequency changer</span>

A frequency changer or frequency converter is an electronic or electromechanical device that converts alternating current (AC) of one frequency to alternating current of another frequency. The device may also change the voltage, but if it does, that is incidental to its principal purpose, since voltage conversion of alternating current is much easier to achieve than frequency conversion.

An H-bridge is an electronic circuit that switches the polarity of a voltage applied to a load. These circuits are often used in robotics and other applications to allow DC motors to run forwards or backwards. The name is derived from its common schematic diagram representation, with four switching elements configured as the branches of a letter "H" and the load connected as the cross-bar.

<span class="mw-page-title-main">Phase converter</span>

A phase converter is a device that converts electric power provided as single phase to multiple phase or vice versa. The majority of phase converters are used to produce three-phase electric power from a single-phase source, thus allowing the operation of three-phase equipment at a site that only has single-phase electrical service. Phase converters are used where three-phase service is not available from the utility provider or is too costly to install. A utility provider will generally charge a higher fee for a three-phase service because of the extra equipment, including transformers, metering, and distribution wire required to complete a functional installation.

A voltage converter is an electric power converter which changes the voltage of an electrical power source. It may be combined with other components to create a power supply.

An induction heater is a key piece of equipment used in all forms of induction heating. Typically an induction heater operates at either medium frequency (MF) or radio frequency (RF) ranges.

This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.

References

  1. Petrocelli, R. (2015). "One-Quadrant Switched-Mode Power Converters". In Bailey, R. (ed.). Proceedings of the CAS–CERN Accelerator School: Power Converters. Geneva: CERN. p. 15. arXiv: 1607.02868 . doi:10.5170/CERN-2015-003. ISBN   9789290834151. S2CID   125663953.
  2. Electric Power Around the World Archived 2009-09-06 at the Wayback Machine , Kropla.com