Elevator paradox (physics)

Last updated

The elevator paradox relates to a hydrometer placed on an "elevator" or vertical conveyor that, by moving to different elevations, changes the atmospheric pressure. In this classic demonstration, the floating hydrometer remains at an equilibrium position. Essentially, a hydrometer measures specific gravity of liquids independent of barometric pressure. This is because the change in air pressure is applied to the entire hydrometer flask. The submerged portion of the flask receives a transmitted force through the liquid, thus no portion of the apparatus receives a net force resulting from a change in air pressure.

Contents

The elevator paradox is a contradictory point between the Newtonian theory of gravitation and Einstein’s basic ideas of Relativity. [1] This is a paradox if the buoyancy of the hydrometer is said to depend on the weight of the liquid that it displaces. At a higher barometric pressure, the liquid occupies a slightly smaller volume, and thus more dense might be considered to have a higher specific gravity. However, the hydrometer also displaces air, and the weight of the liquid and the air are affected equally by elevation.

Cartesian divers

A Cartesian diver, on the other hand, has an internal space that, unlike a hydrometer, is not rigid, and thus can change its displacement as increasing external air pressure compresses the air in the diver. If the diver, instead of being placed in the classic plastic bottle, were floated in a flask on an elevator, the diver would respond to a change in air pressure. Similarly, a non-rigid container like a toy balloon will be affected, as will the rib cage of a human SCUBA diver, and such systems will vary in buoyancy. A glass hydrometer is rigid under normal pressure, for all practical purposes.

The hydrometer in an accelerating frame of reference

The upward or downward acceleration of the elevator, as long as the net force is directed downward, will not change the equilibrium point of the hydrometer either. The force due to acceleration acts on the hydrometer exactly as it would on an equal mass of water or other liquid.

Related Research Articles

<span class="mw-page-title-main">Pressure</span> Force distributed over an area

Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure is the pressure relative to the ambient pressure.

<span class="mw-page-title-main">Weight</span> Force on a mass due to gravity

In science and engineering, the weight of an object, is the force acting on the object due to acceleration or gravity.

<span class="mw-page-title-main">Relative density</span> Ratio of two densities

Relative density, also called specific gravity, is a dimensionless quantity defined as the ratio of the density of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest ; for gases, the reference is air at room temperature. The term "relative density" is preferred in SI, whereas the term "specific gravity" is gradually being abandoned.

Atmospheric pressure, also known as air pressure or barometric pressure, is the pressure within the atmosphere of Earth. The standard atmosphere is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1,013.25 millibars, 760 mm Hg, 29.9212 inches Hg, or 14.696 psi. The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is, the Earth's atmospheric pressure at sea level is approximately 1 atm.

A hydrometer or lactometer is an instrument used for measuring density or relative density of liquids based on the concept of buoyancy. They are typically calibrated and graduated with one or more scales such as specific gravity.

<span class="mw-page-title-main">Buoyancy</span> Upward force that opposes the weight of an object immersed in fluid

Buoyancy, or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the pressure at the bottom of a column of fluid is greater than at the top of the column. Similarly, the pressure at the bottom of an object submerged in a fluid is greater than at the top of the object. The pressure difference results in a net upward force on the object. The magnitude of the force is proportional to the pressure difference, and is equivalent to the weight of the fluid that would otherwise occupy the submerged volume of the object, i.e. the displaced fluid.

<span class="mw-page-title-main">Terminal velocity</span> Highest velocity attainable by a falling object

Terminal velocity is the maximum velocity (speed) attainable by an object as it falls through a fluid. It occurs when the sum of the drag force (Fd) and the buoyancy is equal to the downward force of gravity (FG) acting on the object. Since the net force on the object is zero, the object has zero acceleration. For objects falling through regular air, the buoyant force is usually dismissed and not taken into account as its effects are negligible.

Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of Syracuse.

<span class="mw-page-title-main">Cartesian diver</span> Classic science experiment demonstrating the Archimedes principle and the ideal gas law

A Cartesian diver or Cartesian devil is a classic science experiment which demonstrates the principle of buoyancy and the ideal gas law. The first written description of this device is provided by Raffaello Magiotti, in his book Renitenza certissima dell'acqua alla compressione published in 1648. It is named after René Descartes as the toy is said to have been invented by him.

<span class="mw-page-title-main">Buoyancy compensator (diving)</span> Equipment for controlling the buoyancy of a diver

A buoyancy compensator (BC), also called a buoyancy control device (BCD), stabilizer, stabilisor, stab jacket, wing or adjustable buoyancy life jacket (ABLJ), depending on design, is a type of diving equipment which is worn by divers to establish neutral buoyancy underwater and positive buoyancy at the surface, when needed.

Diving physics, or the physics of underwater diving is the basic aspects of physics which describe the effects of the underwater environment on the underwater diver and their equipment, and the effects of blending, compressing, and storing breathing gas mixtures, and supplying them for use at ambient pressure. These effects are mostly consequences of immersion in water, the hydrostatic pressure of depth and the effects of pressure and temperature on breathing gases. An understanding of the physics behind is useful when considering the physiological effects of diving, breathing gas planning and management, diver buoyancy control and trim, and the hazards and risks of diving.

<span class="mw-page-title-main">Hydrostatics</span> Branch of fluid mechanics that studies fluids at rest

Fluid statics or hydrostatics is the branch of fluid mechanics that studies fluids at hydrostatic equilibrium and "the pressure in a fluid or exerted by a fluid on an immersed body".

<span class="mw-page-title-main">Convective available potential energy</span> Measure of instability in the air as a buoyancy force

In meteorology, convective available potential energy, is the integrated amount of work that the upward (positive) buoyancy force would perform on a given mass of air if it rose vertically through the entire atmosphere. Positive CAPE will cause the air parcel to rise, while negative CAPE will cause the air parcel to sink. Nonzero CAPE is an indicator of atmospheric instability in any given atmospheric sounding, a necessary condition for the development of cumulus and cumulonimbus clouds with attendant severe weather hazards.

In fluid mechanics, pressure head is the height of a liquid column that corresponds to a particular pressure exerted by the liquid column on the base of its container. It may also be called static pressure head or simply static head.

<span class="mw-page-title-main">Mass versus weight</span> Distinction between mass and weight

In common usage, the mass of an object is often referred to as its weight, though these are in fact different concepts and quantities. Nevertheless, one object will always weigh more than another with less mass if both are subject to the same gravity.

<span class="mw-page-title-main">Pascal's law</span> Principle in fluid mechanics

Pascal's law is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere. The law was established by French mathematician Blaise Pascal in 1653 and published in 1663.

Vertical pressure variation is the variation in pressure as a function of elevation. Depending on the fluid in question and the context being referred to, it may also vary significantly in dimensions perpendicular to elevation as well, and these variations have relevance in the context of pressure gradient force and its effects. However, the vertical variation is especially significant, as it results from the pull of gravity on the fluid; namely, for the same given fluid, a decrease in elevation within it corresponds to a taller column of fluid weighing down on that point.

<span class="mw-page-title-main">Diver trim</span> Balance and orientation skills of an underwater diver

The trim of a diver is the orientation of the body in the water, determined by posture and the distribution of weight and volume along the body and equipment, as well as by any other forces acting on the diver. Both static trim and its stability affect the convenience and safety of the diver while under water and at the surface. Midwater trim is usually considered at approximately neutral buoyancy for a swimming scuba diver, and neutral buoyancy is necessary for efficient maneuvering at constant depth, but surface trim may be at significant positive buoyancy to keep the head above water.

Buoyancy force is the defined as the force exerted on the body or an object when inserted in a fluid. Buoyancy force is based on the basic principle of pressure variation with depth, since pressure increases with depth. Hence buoyancy force arises as pressure on the bottom surface of the immersed object is greater than that at the top.

A variable-buoyancy pressure vessel system is a type of rigid buoyancy control device for diving systems that retains a constant volume and varies its density by changing the weight (mass) of the contents, either by moving the ambient fluid into and out of a rigid pressure vessel, or by moving a stored liquid between internal and external variable-volume containers. A pressure vessel is used to withstand the hydrostatic pressure of the underwater environment. A variable-buoyancy pressure vessel can have an internal pressure greater or less than ambient pressure, and the pressure difference can vary from positive to negative within the operational depth range, or remain either positive or negative throughout the pressure range, depending on design choices.

References

  1. Marco Sanchion (2023). A Philosopher’s Take on Black Hole Paradoxes (PhD thesis). Università degli Studi di Urbino Carlo Bo. p. 28.