Ellen Moons

Last updated
Ellen Moons
Alma mater Weizmann Institute of Science
Scientific career
Institutions University of Cambridge
Delft University of Technology
École Polytechnique Fédérale de Lausanne
Cambridge Display Technology
Karlstad University
Thesis Linking the interfacial chemistry and physics of CuInSe₂- and CdTe-based photovoltaic cells and diodes  (1995)

Ellen Moons is a Belgian materials scientist who is a professor at Karlstad University. Her research considers the organisation of molecules and materials in thin films. She is mainly interested in organic and hybrid materials for solution processed photovoltaics.

Contents

Early life and education

Moons is from Belgium. [1] As an undergraduate, she studied physics at Ghent University. [2] After finishing her MSc studies, she was awarded a scholarship by the Israeli Foreign Ministry, and spent half a year in Israel. [2] She decided to stay for doctoral studies, and worked at the Weizmann Institute of Science alongside David Cahen. [1] Her doctoral research considered photovoltaic cells based on cadmium telluride. [3] These photovoltaics have lower costs than silicon based devices, and have a small carbon footprint.[ citation needed ] Moons was a postdoctoral researcher at École Polytechnique Fédérale de Lausanne and at the Delft University of Technology. Her research considered dye-sensitised solar cells. [4]

Moons worked as a research scientist at Cambridge Display Technology, where she worked on polymer light-emitting diodes. [5] During this time she held a joint position with the University of Cambridge, and worked alongside Richard Friend.[ citation needed ]

Research and career

Moons receiving the Goran Gustafsson Prize in 2011 Royal Swedish Academy of Sciences-Hogtidssammankomst 2011-03-31 by Markus Marcetic gg67.jpg
Moons receiving the Göran Gustafsson Prize in 2011

Moons joined Karlstad University in 2011. [6] That year she was awarded the Göran Gustafsson Prize. [7] At the time, Karlstad primarily focussed on polymer-based photovoltaics. Moons expanded this research area, introducing new materials and investigations into structure-property relationships. Moons works to understand degradation mechanisms within emerging energy materials in an effort to improve device performance, stability and lifetime.[ citation needed ]

Moons' group have helped to correlate solar cell morphology with performance. In particular, she helped to explain how the donor and acceptor domains that form within the active layers of solar cells during solution processing impact their performance. [8] Her work on morphology was supported by the K. A. Wallenberg foundation. [8] Alongside the morphology of the active layer, she has studied how the device energetics (e.g. energy levels of the interlayers and interfaces) impact device performance.

Moons has made use of atomic force microscopy to understand nanoscale features on the surface of her thin films. [4] To interrogate the chemical composition of these domains, Moons has shown it is possible to combine atomic force microscopy with infrared spectroscopy. To probe the bulk structure of the thin films, Moons uses dynamic secondary ion mass spectrometry.

In 2018, Moons was elected to the Royal Swedish Academy of Sciences. She was one of five women in a class of fifty five, and the first member from Karlstad University to be elected. [1] She said she would use the position to advance the role of physics in society. [9] As part of this role, she served on the Nobel Committee for Physics and delivered a YouTube lesson describing the science that won the 2018 Nobel Prize in Physics. [10]

Selected publications

Related Research Articles

<span class="mw-page-title-main">Organic electronics</span> Field of materials science

Organic electronics is a field of materials science concerning the design, synthesis, characterization, and application of organic molecules or polymers that show desirable electronic properties such as conductivity. Unlike conventional inorganic conductors and semiconductors, organic electronic materials are constructed from organic (carbon-based) molecules or polymers using synthetic strategies developed in the context of organic chemistry and polymer chemistry.

Poly(<i>p</i>-phenylene vinylene) Chemical compound

Poly(p-phenylene vinylene) (PPV, or polyphenylene vinylene) is a conducting polymer of the rigid-rod polymer family. PPV is the only polymer of this type that can be processed into a highly ordered crystalline thin film. PPV and its derivatives are electrically conducting upon doping. Although insoluble in water, its precursors can be manipulated in aqueous solution. The small optical band gap and its bright yellow fluorescence makes PPV a candidate in applications such as light-emitting diodes (LED) and photovoltaic devices. Moreover, PPV can be doped to form electrically conductive materials. Its physical and electronic properties can be altered by the inclusion of functional side groups.

Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in the form of molecular crystals or amorphous thin films. In general, they are electrical insulators, but become semiconducting when charges are either injected from appropriate electrodes, upon doping or by photoexcitation.

<span class="mw-page-title-main">Richard Friend</span> British physicist

Sir Richard Henry Friend is a British physicist who was the Cavendish Professor of Physics at the University of Cambridge from 1995 until 2020 and is Tan Chin Tuan Centennial Professor at the National University of Singapore. Friend's research concerns the physics and engineering of carbon-based semiconductors. He also serves as Chairman of the Scientific Advisory Board of the National Research Foundation (NRF) of Singapore.

<span class="mw-page-title-main">Indium gallium nitride</span> Chemical compound

Indium gallium nitride is a semiconductor material made of a mix of gallium nitride (GaN) and indium nitride (InN). It is a ternary group III/group V direct bandgap semiconductor. Its bandgap can be tuned by varying the amount of indium in the alloy. InxGa1−xN has a direct bandgap span from the infrared for InN to the ultraviolet of GaN. The ratio of In/Ga is usually between 0.02/0.98 and 0.3/0.7.

<span class="mw-page-title-main">Printed electronics</span> Electronic devices created by various printing methods

Printed electronics is a set of printing methods used to create electrical devices on various substrates. Printing typically uses common printing equipment suitable for defining patterns on material, such as screen printing, flexography, gravure, offset lithography, and inkjet. By electronic-industry standards, these are low-cost processes. Electrically functional electronic or optical inks are deposited on the substrate, creating active or passive devices, such as thin film transistors; capacitors; coils; resistors. Some researchers expect printed electronics to facilitate widespread, very low-cost, low-performance electronics for applications such as flexible displays, smart labels, decorative and animated posters, and active clothing that do not require high performance.

<span class="mw-page-title-main">PEDOT-TMA</span> Chemical compound

Poly(3,4-ethylenedioxythiophene)-tetramethacrylate or PEDOT-TMA is a p-type conducting polymer based on 3,4-ethylenedioxylthiophene or the EDOT monomer. It is a modification of the PEDOT structure. Advantages of this polymer relative to PEDOT are that it is dispersible in organic solvents, and it is non-corrosive. PEDOT-TMA was developed under a contract with the National Science Foundation, and it was first announced publicly on April 12, 2004. The trade name for PEDOT-TMA is Oligotron. PEDOT-TMA was featured in an article entitled "Next Stretch for Plastic Electronics" that appeared in Scientific American in 2004. The U.S. Patent office issued a patent protecting PEDOT-TMA on April 22, 2008.

<span class="mw-page-title-main">David Carroll (physicist)</span>

David Carroll is a U.S. physicist, materials scientist and nanotechnologist, Fellow of the American Physical Society, and director of the Center for Nanotechnology and Molecular Materials at Wake Forest University. He has contributed to the field of nanoscience and nanotechnology through his work in nanoengineered cancer therapeutics, nanocomposite-based display and lighting technologies, high efficiency nanocomposite photovoltaics and thermo/piezo-electric generators.

Organic photovoltaic devices (OPVs) are fabricated from thin films of organic semiconductors, such as polymers and small-molecule compounds, and are typically on the order of 100 nm thick. Because polymer based OPVs can be made using a coating process such as spin coating or inkjet printing, they are an attractive option for inexpensively covering large areas as well as flexible plastic surfaces. A promising low cost alternative to conventional solar cells made of crystalline silicon, there is a large amount of research being dedicated throughout industry and academia towards developing OPVs and increasing their power conversion efficiency.

<span class="mw-page-title-main">Organic solar cell</span> Type of photovoltaic

An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport to produce electricity from sunlight by the photovoltaic effect. Most organic photovoltaic cells are polymer solar cells.

<span class="mw-page-title-main">Polyfluorene</span> Chemical compound

Polyfluorene is a polymer with formula (C13H8)n, consisting of fluorene units linked in a linear chain — specifically, at carbon atoms 2 and 7 in the standard fluorene numbering. It can also be described as a chain of benzene rings linked in para positions with an extra methylene bridge connecting every pair of rings.

Sun-free photovoltaics is a photovoltaics technology which does not require sunlight to produce electricity. This technique was developed by research team at Massachusetts Institute of Technology. Photovoltaic cells convert light to electricity most efficiently at specific wavelengths. The surface features of Sun-free photovoltaics is engineered such that it converts heat energy into the specific wavelengths. This increases the efficiency of existing thermophotovoltaic (TPV) systems.

<span class="mw-page-title-main">Jenny Nelson</span> Irish physicist

Jenny Nelson is Professor of Physics in the Blackett Laboratory and Head of the Climate change mitigation team at the Grantham Institute - Climate Change and Environment at Imperial College London.

<span class="mw-page-title-main">Polymer-fullerene bulk heterojunction solar cell</span>

Polymer-fullerene bulk heterojunction solar cells are a type of solar cell researched in academic laboratories. Polymer-fullerene solar cells are a subset of organic solar cells, also known as organic photovoltaic (OPV) cells, which use organic materials as their active component to convert solar radiation into electrical energy. The polymer, which functions as the donor material in these solar cells, and fullerene derivatives, which function as the acceptor material, are essential components. Specifically, fullerene derivatives act as electron acceptors for donor materials like P3HT, creating a polymer-fullerene based photovoltaic cell. The Polymer-fullerene BHJ forms two channels for transferring electrons and holes to the corresponding electrodes, as opposed to the planar architecture when the Acceptor (A) and Donor (D) materials were sequentially stacked on top of each other and could selectively touch the cathode and anode electrodes. Hence, the D and A domains are expected to form a bi-continuous network with Nano-scale morphology for efficient charge transport and collection after exciton dissociation. Therefore, in the BHJ device architecture, a mixture of D and A molecules in the same or different solvents was used to form a bi-continual layer, which serves as the active layer of the device that absorbs light for exciton generation. The bi-continuous three-dimensional interpenetrating network of the BHJ design generates a greater D-A interface, which is necessary for effective exciton dissociation in the BHJ due to short exciton diffusion. When compared to the prior bilayer design, photo-generated excitons may dissociate into free holes and electrons more effectively, resulting in better charge separation for improved performance of the cell.

<span class="mw-page-title-main">Henry Snaith</span> British Professor of Physics

Henry James Snaith is a professor in physics in the Clarendon Laboratory at the University of Oxford. Research from his group has led to the creation of a new research field, based on halide perovskites for use as solar absorbers. Many individuals who were PhD students and postdoctoral researchers in Snaith's group have now established research groups, independent research portfolios and commercial enterprises. He co-founded Oxford Photovoltaics in 2010 to commercialise perovskite based tandem solar cells.

<span class="mw-page-title-main">Ji-Seon Kim</span> South Korean physicist

Ji-Seon Kim is a South Korean physicist. She is a Professor in the Department of Physics and Centre for Plastic Electronics at Imperial College London.

<span class="mw-page-title-main">Contorted aromatics</span> Hydrocarbon compounds composed of rings fused such that the molecule is nonplanar

In organic chemistry, contorted aromatics, or more precisely contorted polycyclic aromatic hydrocarbons, are polycyclic aromatic hydrocarbons (PAHs) in which the fused aromatic molecules deviate from the usual planarity.

Samson Ally Jenekhe is the Boeing-Martin Professor of Chemical Engineering and Professor of Chemistry at the University of Washington. Jenekhe was previously a chemical engineer at the University of Rochester where his work focused on semiconducting polymers and quantum wires. He has authored over 300 research articles and 28 patents.

Alison Bridget Walker is a physicist who is a professor at the University of Bath. Her research considers computational modelling of printed electronic devices and the development of perovskite solar cells. She is best known for her work on the Kinetic Monte Carlo method.

<span class="mw-page-title-main">Fred Wudl</span> American material scientist

Fred Wudl is an American materials scientist, academic researcher. He is a Professor Emeritus in the Department of Materials Engineering at the University of California, Santa Barbara.

References