Encoding specificity principle

Last updated

The encoding specificity principle is the general principle that matching the encoding contexts of information at recall assists in the retrieval of episodic memories. It provides a framework for understanding how the conditions present while encoding information relate to memory and recall of that information. [1]

Contents

It was introduced by Thomson and Tulving who suggested that contextual information is encoded with memories which affect the retrieval process. When a person uses information stored in their memory it is necessary that the information is accessible. The accessibility is governed by retrieval cues, these cues are dependent on the encoding pattern; the specific encoding pattern may vary from instance to instance, even if nominally the item is the same, as encoding depends on the context. This conclusion was drawn from a recognition-memory task. [2] A series of psychological experiments were undertaken in the 1970s which continued this work and further showed that context affects our ability to recall information.

The context may refer to the context in which the information was encoded, the physical location or surroundings, as well as the mental or physical state of the individual at the time of encoding. This principle plays a significant role in both the concept of context-dependent memory and the concept of state-dependent memory.

Examples of the use of the encoding specificity principle include; studying in the same room as an exam is taken and the recall of information when intoxicated being easier when intoxicated again. 

Development of the Concept

Ebbinghaus, a pioneer of research into memory, noted that associations between items aids recall of information thus the internal context of a list matters. This is because we look for any connection that helps us combine items into meaningful units. This started a lot of research into lists of to-be-remembered (tbr) words, and cues that helped them. In 1968 Tulving and Osler made participants memorise a list of 24 tbr words in the absence or presence of cue words. The cue words facilitated recall when present in the input and output of memorising and recalling the words. They concluded that specific retrieval cues can aid recall if the information of their relation to the tbr words is stored at the same time as the words on the list. [3] Tulving and Thomson studied the effect of the change in context of the tbr by adding, deleting and replacing context words. This resulted in a reduction in the level of recognition performance when the context changed, even though the available information remained context. This led to the encoding specificity principle. [2]

Role of Semantics

Semantics do not always play a role in encoding specificity; memory, rather, depends upon the context at encoding and retrieval. [4] Early research has shown that semantically related cues should be effective in retrieving a word provided the semantic cue was encoded along with the target word. If the semantically related word is not present at the time of encoding, it will not be efficient at cuing recall for the target word. [5]

In a laboratory study, a subject presented with an unrelated word pair is able to recall a target word with much more accuracy when prompted with the unrelated word it was matched with at the time of encoding, than if presented with a semantically related word that was not available during the time of encoding. [4] During a recall task, people benefit equally from a weakly related cue word as from a strongly related cue word, provided the weakly related word was present at encoding. [5]

Regardless of semantic relatedness of the paired words, participants more effectively recalled target words that had been primed when prompted for recall. [6] Many of the following experiments employed a method modeled off of Thomson and Tulving's. All, however, had slight variations which allowed the researchers to discover their own individual findings. The following table shows the importance of priming through word pairs to achieve enhanced recall of words encoded together. [7]

Paired-associate list and four types of prompters
StimulusResponse1 (.01-.08)2 (.09-.21)3 (.23-.36)4 (.38-.59)
TIMEbluevelvet (.03)grey (.1)green (.28)azure (.58)
SHOEbookprint (.02)comic (.15)read (.35)chapter (.59)
TOPchairleg (.02)cushion (.09)upholstery (.36)furniture (.48)
WENTtelephonepole (.04)extension (.17)communication (.33)dial (.59)
TILEgirlchild (.03)cute (.18)feminine (.26)coed (.54)

Modeled after Table 1 Bahrick [7] (1970)

Encoding Contexts

Multiple studies have shown a dependence on context of one's environment as an aid to recall specific items and events.

Physical environment

The location and environment in which one learns something readily affects how freely it is recalled. [8] In an experiment by Godden and Baddeley in 1975, researchers took two groups of individuals and asked them to study and remember a list of given words. [8] One group was given a list of words to study while underwater in scuba gear, the other was given the same list on dry land. When asked to recall the information the participants remembered the list of words better when tested in the environment where the list was studied. This experiment illustrates how recreating the physical environment of encoding can aid in the retrieval process. [9]

The type of environment itself did not matter, just that the environment was constant during encoding and recall, as the effect on recall of the environment of recall depends on the environment of original learning. [10] Memory tested through recognition, however, was not affected. This phenomenon is explained by what is termed the outshining hypothesis: context can be a useful cue for memory but only when it is needed. One will only turn to context as a cue when better cues are unavailable. In recognition tests, cues other than the immediate encoding context and environment are superior, whereas in free-recall tests, the immediate environment serves as the only cue to trigger memory. [10]

Auditory environment

The level and kind of noise in any given encoding environment will affect the ability to recall the information encoded in a different auditory environment. [11] Grant, et al. (1998) performed a study to test how the auditory environment during encoding and the auditory environment during testing effected recall and recognition during a test. In the study 39 participants were asked to read through an article one time, knowing that they would take a short test on the material. Each of the participants wore headphones while reading but some of the participants heard moderately loud background noise and others heard nothing. They found that regardless of the type of test, it is more beneficial to study and test in the same auditory environment. [11] In line with the encoding specificity principle, this mismatch at encoding and retrieval is detrimental to test performance. [12]

Language and the voluntary retrieval of autobiographical memories

Autobiographical memories are more accessible when the language at encoding and recall match. [13] Researchers conducted interviews with Russian and English speaking bilingual students in both languages and asked participants to retrieve the first memory that comes to mind when hearing a generic word in either language. They found that when presented with Russian-language cues, participants recalled memories that occurred in a Russian-speaking environment and when presented with English-language cues, they easily recalled memories from English-speaking contexts. [13] This is first because the cue words may have been spoken during the original event that the participant was remembering; hearing the word at encoding and again at retrieval may have been a sufficient cue to bring the memory to mind. Second, this phenomenon may be due to the general language-created ambiance of the situation in which participants were tested rather than the specific associations to individual cue words. [13]

Specific Examples

Diagnosis of disease

Patients with Alzheimer's disease (AD) are unable to effectively process the semantic relationship between two words at encoding to assist in the retrieval process. [14] The general population benefits equally from a weakly related cue word as from a strongly related cue word during a recall task, provided the weakly related word was present at encoding. Patients with AD, however, were unable to benefit from the weakly related cue even if it was present at both encoding and retrieval. [14] Instead of relying upon semantic encoding, those with AD presented their most dominant associations to the cue words during recall test. This explains why all AD patients performed well when two strong words were matched together but very poorly when a strong and weak pairs were presented during recall. Deficits in episodic memory are now widely accepted as a characteristic symptom of Alzheimer's disease. [15]

Alcohol

Information encoded and stored while intoxicated, see state-dependent memory, is retrieved more effectively when an individual is intoxicated as compared to being sober. State-dependent memory is one example of encoding specificity. If an individual encodes information while intoxicated he or she, ideally, should match that state when attempting to recall the encoded information. This type of state-dependent effect is strongest with free recall rather than when strong retrieval cues are present. [16]

This finding is a variation of the context-dependency effect of the encoding specificity principle and is much more apparent with low-imagery words than high-imagery words. Both high and low imagery words, however, are less likely to be recalled while intoxicated due to the inherent nature of intoxication. [17] This principle demonstrates the significance of encoding specificity; the contextual state of intoxication provides retrieval cues and information that are superior to and outweigh the negative effects on memory from a depressant substance that activates GABA and inhibits neurotransmission. In this regard, this encoding specific context trumps the importance of such neural brain activity.

Advertising

The emotional nature of advertisements affects the rate of recall for the advertised product. [18] When the nature of the advertisement was emotional, an encoding focus on episodic memory (trying to carefully remember the visual content of the commercial) led to a much higher rate of recall for emotional advertisements. Conversely, al peptions,[ check spelling ] preferences of given object advertised) led to a much higher recall of specific advertisements. [18] Empirical evidence regarding the nature of emotional advertising provides the advertising industry with data as to how to contour their ads to maximize recall of advertisements. Political advertising displays this emotional nature of content. A political advertisement [19] from Lyndon B. Johnson's 1964 presidential campaign is inherently emotional in nature and therefore very easily remembered. If this advertisement re viewed and encoded in an episodic mode, due to its emotional nature, it would be easily recalled because of the mode of memory during the encoding process. This advertisement is a lasting example of emotional advertisements being easily recalled: it aired only once on September 7, 1964 yet is one of the most remembered and famous campaign advertisements to date.

Studying

The encoding specificity principle has an implication for studying; as the recall of information is aided by the context of encoding the information, suggesting one should study in a similar context to the exam. The way an individual studies should match the way he or she is tested. If one is tested on application of principles to new examples, then one should practice by applying principles during the study session. When students know the requirements for a test or the performance task they can better encode the information while studying and can perform at a higher level when tested. [20] Studying information in a manner that is closest to the method of assessment is the optimal method of studying due to it aiding recall of the information in a similar context to that of the assessment. [21]

Criticism

James S. Nairne of Purdue University is the primary opponent of Thomson and Tulving's encoding specificity principle. [12] He argues that the encoding-retrieval match is correlational rather than causal and states that many cognitive psychologists consider the principle to be "sacrosanct". [22] Nairne suggests that what determines successful memory is cue distinctiveness. He says that good memory may be produced even if there is almost no encoding-retrieval overlap, provided the minimal overlap is highly distinctive. [22] He characterizes memory as an "active process of discrimination" [22] and proposes that we use cues to choose between several retrieval candidates. Increasing the encoding-retrieval match improves memory performance, he believes, but only because it increases the probability that distinctive features will come into play. [22]

Phillip Higham has also criticised the design and interpretation of Thomson and Tulving's original experiments which used strong and weak cues to generate the encoding specificity principle. He states that the use of forced-report retrieval may have resulted in participants responding to the cues positively, not due to them being encoded at the time of learning but due to pre-experimentally derived associations. Suggesting that the word on the list 'came to mind' at the time of the experiment and that anyone could have given the positive answer. This is seen as even more likely with strong cues. This is known as the 'lucky guessing' criticism. [23]

In 1975 Leo Postman conducted experiments on the encoding specificity principle to check the generalisability of the concept. The first experiment focused on the normative strength go the cues presented on the encoding and recall of words and the second on the presence of weak cues in seconding and recall. The results of the experiments failed to support the encoding specificity principle as strong extra-list cues facilitated the recall of tbr words in the presence of weak encoded cues and recall of the original weak encoded cues failed to be recognised in the context of new strong cues. [24]

Related Research Articles

Recall in memory refers to the mental process of retrieval of information from the past. Along with encoding and storage, it is one of the three core processes of memory. There are three main types of recall: free recall, cued recall and serial recall. Psychologists test these forms of recall as a way to study the memory processes of humans and animals. Two main theories of the process of recall are the two-stage theory and the theory of encoding specificity.

Source amnesia is the inability to remember where, when or how previously learned information has been acquired, while retaining the factual knowledge. This branch of amnesia is associated with the malfunctioning of one's explicit memory. It is likely that the disconnect between having the knowledge and remembering the context in which the knowledge was acquired is due to a dissociation between semantic and episodic memory – an individual retains the semantic knowledge, but lacks the episodic knowledge to indicate the context in which the knowledge was gained.

Semantic memory refers to general world knowledge that humans have accumulated throughout their lives. This general knowledge is intertwined in experience and dependent on culture. New concepts are learned by applying knowledge learned from things in the past.

The spacing effect demonstrates that learning is more effective when study sessions are spaced out. This effect shows that more information is encoded into long-term memory by spaced study sessions, also known as spaced repetition or spaced presentation, than by massed presentation ("cramming").

Endel Tulving was an Estonian-born Canadian experimental psychologist and cognitive neuroscientist. In his research on human memory he proposed the distinction between semantic and episodic memory. Tulving was a professor at the University of Toronto. He joined the Rotman Research Institute at Baycrest Health Sciences in 1992 as the first Anne and Max Tanenbaum Chair in Cognitive Neuroscience and remained there until his retirement in 2010. In 2006, he was named an Officer of the Order of Canada (OC), Canada's highest civilian honour.

The Levels of Processing model, created by Fergus I. M. Craik and Robert S. Lockhart in 1972, describes memory recall of stimuli as a function of the depth of mental processing. Deeper levels of analysis produce more elaborate, longer-lasting, and stronger memory traces than shallow levels of analysis. Depth of processing falls on a shallow to deep continuum. Shallow processing leads to a fragile memory trace that is susceptible to rapid decay. Conversely, deep processing results in a more durable memory trace. There are three levels of processing in this model. Structural processing, or visual, is when we remember only the physical quality of the word E.g how the word is spelled and how letters look. Phonemic processing includes remembering the word by the way it sounds. E.G the word tall rhymes with fall. Lastly, we have semantic processing in which we encode the meaning of the word with another word that is similar of has similar meaning. Once the word is perceived, the brain allows for a deeper processing.

Cue-dependent forgetting, or retrieval failure, is the failure to recall information without memory cues. The term either pertains to semantic cues, state-dependent cues or context-dependent cues.

State-dependent memory or state-dependent learning is the phenomenon where people remember more information if their physical or mental state is the same at time of encoding and time of recall. State-dependent memory is heavily researched in regards to its employment both in regards to synthetic states of consciousness as well as organic states of consciousness such as mood. While state-dependent memory may seem rather similar to context-dependent memory, context-dependent memory involves an individual's external environment and conditions while state-dependent memory applies to the individual's internal conditions.

Self-referential encoding is a method of organizing information in one's memory in which one interprets incoming information in relation to oneself, using one's self-concept as a background. Examples include being able to attribute personality traits to oneself or to identify recollected episodes as being personal memories of the past. The implications of self-referential processing are evident in many psychological phenomena. For example, the "cocktail party effect" notes that people attend to the sound of their names even during other conversation or more prominent, distracting noise. Also, people tend to evaluate things related to themselves more positively. For example, people tend to prefer their own initials over other letters. The self-reference effect (SRE) has received the most attention through investigations into memory. The concepts of self-referential encoding and the SRE rely on the notion that relating information to the self during the process of encoding it in memory facilitates recall, hence the effect of self-reference on memory. In essence, researchers have investigated the potential mnemonic properties of self-reference.

Memory has the ability to encode, store and recall information. Memories give an organism the capability to learn and adapt from previous experiences as well as build relationships. Encoding allows a perceived item of use or interest to be converted into a construct that can be stored within the brain and recalled later from long-term memory. Working memory stores information for immediate use or manipulation, which is aided through hooking onto previously archived items already present in the long-term memory of an individual.

The generation effect is a phenomenon where information is better remembered if it is generated from one's own mind rather than simply read. Researchers have struggled to account for why the generated information is better recalled than read information, but no single explanation has been sufficient.

Transfer-appropriate processing (TAP) is a type of state-dependent memory specifically showing that memory performance is not only determined by the depth of processing, but by the relationship between how information is initially encoded and how it is later retrieved.

For cognitive interview to evaluate tests or to improve questionnaire design, see Cognitive Pretesting

In psychology, context-dependent memory is the improved recall of specific episodes or information when the context present at encoding and retrieval are the same. In a simpler manner, "when events are represented in memory, contextual information is stored along with memory targets; the context can therefore cue memories containing that contextual information". One particularly common example of context-dependence at work occurs when an individual has lost an item in an unknown location. Typically, people try to systematically "retrace their steps" to determine all of the possible places where the item might be located. Based on the role that context plays in determining recall, it is not at all surprising that individuals often quite easily discover the lost item upon returning to the correct context. This concept is heavily related to the encoding specificity principle.

In cognitive psychology, a recall test is a test of memory of mind in which participants are presented with stimuli and then, after a delay, are asked to remember as many of the stimuli as possible. Memory performance can be indicated by measuring the percentage of stimuli the participant was able to recall. An example of this would be studying a list of 10 words and later recalling 5 of them. This is a 50 percent recall. Participants' responses also may be analyzed to determine if there is a pattern in the way items are being recalled from memory. For example, if participants are given a list consisting of types of vegetables and types of fruit, their recall can be assessed to determine whether they grouped vegetables together and fruits together. Recall is also involved when a person is asked to recollect life events, such as graduating high school, or to recall facts they have learned, such as the capital of Florida.

Memory gaps and errors refer to the incorrect recall, or complete loss, of information in the memory system for a specific detail and/or event. Memory errors may include remembering events that never occurred, or remembering them differently from the way they actually happened. These errors or gaps can occur due to a number of different reasons, including the emotional involvement in the situation, expectations and environmental changes. As the retention interval between encoding and retrieval of the memory lengthens, there is an increase in both the amount that is forgotten, and the likelihood of a memory error occurring.

Retrieval-induced forgetting (RIF) is a memory phenomenon where remembering causes forgetting of other information in memory. The phenomenon was first demonstrated in 1994, although the concept of RIF has been previously discussed in the context of retrieval inhibition.

<span class="mw-page-title-main">Bilingual memory</span>

Bilingualism is the regular use of two fluent languages, and bilinguals are those individuals who need and use two languages in their everyday lives. A person's bilingual memories are heavily dependent on the person's fluency, the age the second language was acquired, and high language proficiency to both languages. High proficiency provides mental flexibility across all domains of thought and forces them to adopt strategies that accelerate cognitive development. People who are bilingual integrate and organize the information of two languages, which creates advantages in terms of many cognitive abilities, such as intelligence, creativity, analogical reasoning, classification skills, problem solving, learning strategies, and thinking flexibility.

Elaborative encoding is a mnemonic system which uses some form of elaboration, such as an emotional cue, to assist in the retention of memories and knowledge. In this system one attaches an additional piece of information to a memory task which makes it easier to recall. For instance, one may recognize a face easier if character traits are also imparted about the person at the same time.

The forward testing effect, also known as test potentiated new learning, is a psychological learning theory which suggests that testing old information can improve learning of new information. Unlike traditional learning theories in educational psychology which have established the positive effect testing has when later attempting to retrieve the same information, the forward testing effect instead suggests that the testing experience itself possesses unique benefits which enhance the learning of new information. This memory effect is also distinct from the 'practice effect' which typically refers to an observed improvement which results from repetition and restudy, as the testing itself is considered as the catalyst for improved recall. Instead, this theory suggests that testing serves not only as a tool for assessment but as a learning tool which can aid in memory recall. The forward testing effect indicates that educators should encourage students to study using testing techniques rather than restudying information repeatedly.

References

  1. Tulving, Endel; Donald Thomson (1973). "Encoding specificity and retrieval processes in episodic memory". Psychological Review. 80 (5): 352–373. doi:10.1037/h0020071. S2CID   14879511.[ verification needed ]
  2. 1 2 Tulving, Endel; Thomson, Donald M. (1971). "Retrieval processes in recognition memory: Effects of associative context". Journal of Experimental Psychology. 87 (1): 116–124. doi:10.1037/h0030186. ISSN   0022-1015.
  3. Tulving, Endel; Osler, Shirley (1968). "Effectiveness of retrieval cues in memory for words". Journal of Experimental Psychology. 77 (4): 593–601. doi:10.1037/h0026069. ISSN   0022-1015. PMID   5672271.
  4. 1 2 Hannon, Brenda; Fergus Craik (2001). "Encoding specificity revisited: The role of semantics". Canadian Journal of Experimental Psychology. 55 (3): 231–243. doi:10.1037/h0087369. PMID   11605558. S2CID   17570987.
  5. 1 2 Reder, Lynne; John Anderson; Robert Bjork (1974). "A semantic interpretation of encoding specificity". Journal of Experimental Psychology. 102 (4): 648–656. doi:10.1037/h0036115.
  6. Tulving, Endel; Donald Thomson (1973). "Encoding specificity and retrieval processes in episodic memory". Psychological Review. 80 (5): 352–373. doi:10.1037/h0020071. S2CID   14879511.
  7. 1 2 Bahrick, Harry (1970). "Two-phase model for prompted recall". Psychological Review. 77 (3): 215–222. doi:10.1037/h0029099.
  8. 1 2 Godden, D.R.; A.D. Baddely (1975). "Context-Dependent Memory in Two Natural Environments: On Land and Underwater". The British Journal of Psychology. 66 (3): 325–331. doi:10.1111/j.2044-8295.1975.tb01468.x.
  9. Goldstein, E. Bruce, 1941- (2015). Cognitive psychology : connecting mind, research and everyday experience (4th ed.). New york: Cengage learning. ISBN   978-1-285-76388-0. OCLC   885178247.{{cite book}}: CS1 maint: multiple names: authors list (link)
  10. 1 2 Godden, Duncan; Alan Baddely (1980). "When Does Context Influence Recognition Memory?". The British Journal of Psychology. 71: 99–104. doi:10.1111/j.2044-8295.1980.tb02735.x.
  11. 1 2 Grant, Harry; Lane C. Bredahl; John Clay; Jennifer Ferrie; Jane Groves; Timothy McDorman; Veronica Dark (1998). "Context-dependent memory for meaningful material: Information for students". Applied Cognitive Psychology. 12 (6): 617–623. CiteSeerX   10.1.1.497.6500 . doi:10.1002/(sici)1099-0720(1998120)12:6<617::aid-acp542>3.0.co;2-5.
  12. 1 2 Robinson-Riegler, Bridget (2008). Cognitive Psychology: Applying the Science of the mind. Boston, MA: Pearson Publishing. pp. 246–248. ISBN   978-0-205-03364-5.
  13. 1 2 3 Marian, Viorica; Ulric Neisser (2000). "Language Dependent recall of autobiographical memories". Journal of Experimental Psychology. 129 (3): 361–368. doi:10.1037/0096-3445.129.3.361. PMID   11006905. S2CID   4107490.
  14. 1 2 Granholm, Eric; Nelson Butters (1988). "Associative encoding and retrieval in Alzheimer's and Huntington's Disease". Brain and Cognition. 7 (3): 335–347. doi:10.1016/0278-2626(88)90007-3. PMID   2969744. S2CID   20415261.
  15. Adam, S.; M. Van der Linden; A. Ivanoiu; A.-C. Juillerat; S. Bechet; E. Salmon (2007). "Optimization of encoding specificity for the diagnosis of early AD: The RI-48 task". Journal of Clinical and Experimental Neuropsychology. 29 (5): 477–487. doi:10.1080/13803390600775339. hdl: 2268/28214 . PMID   17564913. S2CID   31325865.
  16. Eich, James Eric (March 1980). "The cue-dependent nature of state-dependent retrieval". Memory & Cognition. 8 (2): 157–173. doi: 10.3758/bf03213419 . ISSN   0090-502X. PMID   7382817.
  17. Weingartner, Herbert; Wolansa Adefras; James E. Eich; Dennis L. Murphy (1976). "Encoding-imagery specificity in alcohol state-dependent learning". Journal of Experimental Psychology: Human Learning and Memory. 2 (1): 83–87. doi:10.1037/0278-7393.2.1.83. PMID   1249533.
  18. 1 2 Friestad, Marian; Esther Thorson (1993). "Remembering ads: the effects of encoding strategies, retrieval cues and emotional response". Journal of Consumer Psychology. 2 (1): 1–23. doi:10.1016/s1057-7408(08)80072-1.
  19. Museum of the Moving Image. "Daisy". The Living Room Candidate. Archived from the original on 26 April 2014. Retrieved 18 November 2011.
  20. Anderson, Thomas H. Studying. Technical Report No. 155. OCLC   967611520.
  21. Mathews, C. O. (1938). "Comparison of methods of study for immediate and delayed recall". Journal of Educational Psychology. 29 (2): 101–106. doi:10.1037/h0055182. ISSN   0022-0663.
  22. 1 2 3 4 Nairne, James S. (2002). "The myth of the encoding-retrieval match". Memory. 10 (5/6): 389–395. CiteSeerX   10.1.1.377.6640 . doi:10.1080/09658210244000216. PMID   12396651. S2CID   8085159.
  23. Higham, Philip A. (January 2002). "Strong cues are not necessarily weak: Thomson and Tulving (1970) and the encoding specificity principle revisited". Memory & Cognition. 30 (1): 67–80. doi: 10.3758/bf03195266 . ISSN   0090-502X. PMID   11958356.
  24. Postman, Leo (November 1975). "Tests of the generality of the principle of encoding specificity". Memory & Cognition. 3 (6): 663–672. doi: 10.3758/bf03198232 . ISSN   0090-502X. PMID   24203908.