Energy planning

Last updated

Energy planning has a number of different meanings, but the most common meaning of the term is the process of developing long-range policies to help guide the future of a local, national, regional or even the global energy system. [1] Energy planning is often conducted within governmental organizations but may also be carried out by large energy companies such as electric utilities or oil and gas producers. These oil and gas producers release greenhouse gas emissions. Energy planning may be carried out with input from different stakeholders drawn from government agencies, local utilities, academia and other interest groups.

Contents

Since 1973, energy modeling, on which energy planning is based, has developed significantly. Energy models can be classified into three groups: descriptive, normative, and futuristic forecasting. [2]

Energy planning is often conducted using integrated approaches that consider both the provision of energy supplies and the role of energy efficiency in reducing demands ( Integrated Resource Planning ). [3] Energy planning should always reflect the outcomes of population growth and economic development. There are also several alternative energy solutions which avoid the release of greenhouse gasses, like electrifying current machines and using nuclear energy. A unused energy plan for cities is created as a result of a careful investigation of the arranging prepare, which coordinating city arranging and vitality arranging together and gives energy arrangements for high-level cities and mechanical parks. [4]

Planning and market concepts

Energy planning has traditionally played a strong role in setting the framework for regulations in the energy sector (for example, influencing what type of power plants might be built or what prices were charged for fuels). But in the past two decades[ when? ] many countries have deregulated their energy systems so that the role of energy planning has been reduced, and decisions have increasingly been left to the market. This has arguably led to increased competition in the energy sector, although there is little evidence that this has translated into lower energy prices for consumers. Indeed, in some cases, deregulation has led to significant concentrations of "market power" with large very profitable companies having a large influence as price setters.

Integrated resource planning

Approaches to energy planning depends on the planning agent and the scope of the exercise. Several catch-phrases are associated with energy planning. Basic to all is resource planning, i.e. a view of the possible sources of energy in the future. A forking in methods is whether the planner considers the possibility of influencing the consumption (demand) for energy. The 1970s energy crisis ended a period of relatively stable energy prices and stable supply-demand relation. Concepts of demand side management, least cost planning and integrated resource planning (IRP) emerged with new emphasis on the need to reduce energy demand by new technologies or simple energy saving. [5] [6]

Sustainable energy planning

Further global integration of energy supply systems and local and global environmental limits amplifies the scope of planning both in subject and time perspective. Sustainable energy planning should consider environmental impacts of energy consumption and production, particularly in light of the threat of global climate change, which is caused largely by emissions of greenhouse gases from the world's energy systems, which is a long-term process.


The 2022 renewable energy industry outlook shows supportive policies from an administration focused on combatting climate change in 2022's political landscape aid an expected growth of the renewable energy industry [7] Biden has argued in favor of developing the clean energy industry in the US and in the world to vigorously address climate change. President Biden expressed his intention to move away from the oil industry. [8] 2022 administration calls for, "Plan for Climate Change and Environmental Justice", which aims to reach 100% carbon-free power generation by 2035 and net-zero emissions by 2050 in the USA. [9]

Many OECD countries and some U.S. states are now moving to more closely regulate their energy systems. For example, many countries and states have been adopting targets for emissions of CO2 and other greenhouse gases. In light of these developments, broad scope integrated energy planning could become increasingly important [10]

Sustainable Energy Planning takes a more holistic approach to the problem of planning for future energy needs. It is based on a structured decision making process based on six key steps, namely:

  1. Exploration of the context of the current and future situation
  2. Formulation of particular problems and opportunities which need to be addressed as part of the Sustainable Energy Planning process. This could include such issues as "peak oil" or "economic recession/depression", as well as the development of energy demand technologies.
  3. Create a range of models to predict the likely impact of different scenarios. This traditionally would consist of mathematical modelling but is evolving to include "Soft System Methodologies" such as focus groups, peer ethnographic research, "what if" logical scenarios etc.
  4. Based on the output from a wide range of modelling exercises and literature reviews, open forum discussion etc., the results are analysed and structured in an easily interpreted format.
  5. The results are then interpreted to determine the scope, scale and likely implementation methodologies which would be required to ensure successful implementation.
  6. This stage is a quality assurance process which actively interrogates each stage of the Sustainable Energy Planning process and checks if it has been carried out rigorously, without any bias and that it furthers the aims of sustainable development and does not act against them.
  7. The last stage of the process is to take action. This may consist of the development, publication and implementation of a range of policies, regulations, procedures or tasks which together will help to achieve the goals of the Sustainable Energy Plan.

Designing for implementation is often carried out using "Logical Framework Analysis" which interrogates a proposed project and checks that it is completely logical, that it has no fatal errors and that appropriate contingency arrangements have been put in place to ensure that the complete project will not fail if a particular strand of the project fails.

Sustainable energy planning is particularly appropriate for communities who want to develop their own energy security, while employing best available practice in their planning processes. [1]

Energy planning tools (software)

Energy planning can be conducted on different software platforms and over various timespans and with different qualities of resolution (i.e very short divisions of time/space or very large divisions). There are multiple platforms available for all sorts of energy planning analysis, with focuses on different areas, and significant growth in terms of modeling software or platforms available in recent years. Energy planning tools can be identified as commercial, open source, educational, free, and as used by governments (often custom tools). [11]

Potential energy solutions

The chart represents global energy consumption and shows the breakdown from each energy source. Global-energy-substitution.png
The chart represents global energy consumption and shows the breakdown from each energy source.

Electrification

One potential energy option is the move to electrify all machines that currently use fossil fuels for their energy source. There are already electric alternatives available such as electric cars, electric cooktops, and electric heat pumps, now these products need to be widely implemented to electrify and decarbonize our energy use. To reduce our dependence on fossil fuels and transfer to electric machines, it requires that all electricity be generated by renewable sources. As of 2020 60.3% of all energy generated in the United States came from fossil fuels, 19.7% came from nuclear energy, and 19.8% came from renewables. [12] The United States is still heavily relying on fossil fuels as a source of energy. For the electrification of our machines to help the efforts to decarbonize, more renewable energy sources, such as wind and solar would have to be built.

Another potential problem that comes with the use of renewable energy is the energy transmission. A study conducted by Princeton University found that the locations with the highest renewable potential are in the Midwest, however, the places with the highest energy demand are coastal cities. [13] To effectively make use of the electricity coming from these renewable sources, the U.S. electric grid would have to be nationalized, and more high voltage transmission lines would have to be built. The total amount of electricity that the grid would have to be able to accommodate has to increase. If more electric cars were being driven there would be a decline in gasoline demand and an increased demand for electricity, this increased demand for electricity would require our electric grids to be able to transport more energy at any given moment than is currently viable.

Nuclear Energy

Nuclear energy is sometimes considered to be a clean energy source. [14] Nuclear energy's only associated carbon emission takes place during the process of mining for uranium, but the process of obtaining energy from uranium does not emit any carbon. [15] A primary concern in using nuclear energy stems from the issue of what to do with radioactive waste. The highest level source of radioactive waste comes from the spent reactor fuel, the radioactive fuel decreases over time through radioactive decay. [16] The time it takes for the radioactive waste to decay depends on the length of the substance's half-life. Currently, the United States does not have a permanent disposal facility for high-level nuclear waste.

Public support behind increasing nuclear energy production is an important consideration when planning for sustainable energy. Nuclear energy production has a complicated past. Multiple nuclear power plants having accidents or meltdowns has tainted the reputation of nuclear energy for many. A considerable section of the public is concerned about the health and environmental impacts of a nuclear power plant melting down, believing that the risk is not worth the reward. Though there is a portion of the population that believes expanding nuclear energy is necessary and that the threats of climate change far outweigh the possibility of a meltdown, especially considering the advancements in technology that have been made within recent decades.  

Global greenhouse gas emissions and energy production

The majority of global manmade greenhouse gas emissions is derived from the energy sector, contributing to 72.0% of global emissions. [17] The majority of that energy goes toward producing electricity and heat (31.0%), the next largest contributor is agriculture (11%), followed by transportation (15%), forestry (6%) and manufacturing (12%). [18] There are multiple different molecular compounds that fall under the classification of green house gases including, carbon dioxide, methane, and nitrous oxide. Carbon dioxide is the largest emitted greenhouse gas, making up 76% of global emission. Methane is the second largest emitted greenhouse gas at 16%, methane is primarily emitted from the agriculture industry. Lastly nitrous oxide makes up 6% of global emitted greenhouse gases, agriculture and industry are the largest emitters of nitrous oxide. [19]

The challenges in the energy sector include the reliance on coal. Coal production remains key to the energy mix and global imports rely on coal to meet the growing demand for gas [20] Energy planning evaluates the current energy situation and estimates future changes based on industrialization patterns and resource availability. Many of the future changes and solutions depend on the global effort to move away from coal and begin making energy efficient technology and continue to electrify the world. [21]

See also


Related Research Articles

<span class="mw-page-title-main">Electricity generation</span> Process of generating electrical power

Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery to end users or its storage.

<span class="mw-page-title-main">Non-renewable resource</span> Class of natural resources

A non-renewable resource is a natural resource that cannot be readily replaced by natural means at a pace quick enough to keep up with consumption. An example is carbon-based fossil fuels. The original organic matter, with the aid of heat and pressure, becomes a fuel such as oil or gas. Earth minerals and metal ores, fossil fuels and groundwater in certain aquifers are all considered non-renewable resources, though individual elements are always conserved.

<span class="mw-page-title-main">Energy development</span> Methods bringing energy into production

Energy development is the field of activities focused on obtaining sources of energy from natural resources. These activities include the production of renewable, nuclear, and fossil fuel derived sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.

<span class="mw-page-title-main">Environmental impact of electricity generation</span>

Electric power systems consist of generation plants of different energy sources, transmission networks, and distribution lines. Each of these components can have environmental impacts at multiple stages of their development and use including in their construction, during the generation of electricity, and in their decommissioning and disposal. These impacts can be split into operational impacts and construction impacts. All forms of electricity generation have some form of environmental impact, but coal-fired power is the dirtiest. This page is organized by energy source and includes impacts such as water usage, emissions, local pollution, and wildlife displacement.

<span class="mw-page-title-main">Zero-emissions vehicle</span> Class of motor vehicle

A zero-emission vehicle, or ZEV, is a vehicle that does not emit exhaust gas or other pollutants from the onboard source of power. The California definition also adds that this includes under any and all possible operational modes and conditions. This is because under cold-start conditions for example, internal combustion engines tend to produce the maximum amount of pollutants. In a number of countries and states, transport is cited as the main source of greenhouse gases (GHG) and other pollutants. The desire to reduce this is thus politically strong.

<span class="mw-page-title-main">Sustainable energy</span>

Energy is sustainable if it "meets the needs of the present without compromising the ability of future generations to meet their own needs." Most definitions of sustainable energy include considerations of environmental aspects such as greenhouse gas emissions and social and economic aspects such as energy poverty. Renewable energy sources such as wind, hydroelectric power, solar, and geothermal energy are generally far more sustainable than fossil fuel sources. However, some renewable energy projects, such as the clearing of forests to produce biofuels, can cause severe environmental damage.

<span class="mw-page-title-main">Energy policy</span> How a government or business deals with energy

Energy policy is the manner in which a given entity has decided to address issues of energy development including energy conversion, distribution and use as well as reduction of greenhouse gas emissions in order to contribute to climate change mitigation. The attributes of energy policy may include legislation, international treaties, incentives to investment, guidelines for energy conservation, taxation and other public policy techniques. Energy is a core component of modern economies. A functioning economy requires not only labor and capital but also energy, for manufacturing processes, transportation, communication, agriculture, and more. Energy planning is more detailed than energy policy.

<span class="mw-page-title-main">Fossil fuel power station</span> Facility that burns fossil fuels to produce electricity

A fossil fuel power station is a thermal power station which burns a fossil fuel, such as coal or natural gas, to produce electricity. Fossil fuel power stations have machinery to convert the heat energy of combustion into mechanical energy, which then operates an electrical generator. The prime mover may be a steam turbine, a gas turbine or, in small plants, a reciprocating gas engine. All plants use the energy extracted from the expansion of a hot gas, either steam or combustion gases. Although different energy conversion methods exist, all thermal power station conversion methods have their efficiency limited by the Carnot efficiency and therefore produce waste heat.

<span class="mw-page-title-main">Climate change mitigation</span> Actions to reduce net greenhouse gas emissions to limit climate change

Climate change mitigation is action to limit climate change by reducing emissions of greenhouse gases or removing those gases from the atmosphere. The recent rise in global average temperature is mostly due to emissions from burning fossil fuels such as coal, oil, and natural gas. Mitigation can reduce emissions by transitioning to sustainable energy sources, conserving energy, and increasing efficiency. It is possible to remove carbon dioxide from the atmosphere by enlarging forests, restoring wetlands and using other natural and technical processes. Experts call these processes carbon sequestration. Governments and companies have pledged to reduce emissions to prevent dangerous climate change in line with international negotiations to limit warming by reducing emissions.

<span class="mw-page-title-main">Low-carbon economy</span> Economy based on energy sources with low levels of greenhouse gas emissions

A low-carbon economy (LCE) or decarbonised economy is an economy based on energy sources that produce low levels of greenhouse gas (GHG) emissions. GHG emissions due to human activity are the dominant cause of observed climate change since the mid-20th century. Continued emission of greenhouse gases will cause long-lasting changes around the world, increasing the likelihood of severe, pervasive, and irreversible effects for people and ecosystems. Shifting to a low-carbon economy on a global scale could bring substantial benefits both for developed and developing countries. Many countries around the world are designing and implementing low-emission development strategies (LEDS). These strategies seek to achieve social, economic, and environmental development goals while reducing long-term greenhouse gas emissions and increasing resilience to the effects of climate change.

<span class="mw-page-title-main">Energy policy of Australia</span> Overview of the energy policy of Australia

The energy policy of Australia is subject to the regulatory and fiscal influence of all three levels of government in Australia, although only the State and Federal levels determine policy for primary industries such as coal. Federal policies for energy in Australia continue to support the coal mining and natural gas industries through subsidies for fossil fuel use and production. Australia is the 10th most coal-dependent country in the world. Coal and natural gas, along with oil-based products, are currently the primary sources of Australian energy usage and the coal industry produces over 30% of Australia's total greenhouse gas emissions. In 2018 Australia was the 8th highest emitter of greenhouse gases per capita in the world.

<span class="mw-page-title-main">Energy policy of China</span> Energy sources used and produced by China

Ensuring adequate energy supply to sustain economic growth has been a core concern of the Chinese government since 1949. The country is the world's largest emitter of greenhouse gases, and coal in China is a major cause of global warming. However, from 2010 to 2015 China reduced energy consumption per unit of GDP by 18%, and CO2 emissions per unit of GDP by 20%. On a per-capita basis, it was the world's 51st largest emitter of greenhouse gases in 2016. China is also the world's largest renewable energy producer. China is the largest producer of hydroelectricity, solar power and wind power in the world. The energy policy of China is connected to its industrial policy. The goals of China's industrial policy dictate its energy needs.  

<span class="mw-page-title-main">Fossil fuel phase-out</span> Gradual reduction of the use and production of fossil fuels

Fossil fuel phase-out is the gradual reduction of the use and production of fossil fuels to zero, to reduce deaths and illness from air pollution, limit climate change, and to strengthen energy independence. It is part of the ongoing renewable energy transition.

<span class="mw-page-title-main">Low-carbon power</span> Power produced with lower carbon dioxide emissions

Low-carbon power is electricity produced with substantially lower greenhouse gas emissions than conventional fossil fuel power generation. The energy transition to low-carbon power is one of the most important actions required to limit climate change. Power sector emissions may have peaked in 2018. During the first six months of 2020, scientists observed an 8.8% decrease in global CO2 emissions relative to 2019 due to COVID-19 lockdown measures. The two main sources of the decrease in emissions included ground transportation (40%) and the power sector (22%). This event is the largest absolute decrease in CO2 emissions in history, but emphasizes that low-carbon power "must be based on structural and transformational changes in energy-production systems".

Greenhouse gas emissions by Australia totalled 533 million tonnes CO2-equivalent based on greenhouse gas national inventory report data for 2019; representing per capita CO2e emissions of 21 tons, three times the global average. Coal was responsible for 30% of emissions. The national Greenhouse Gas Inventory estimates for the year to March 2021 were 494.2 million tonnes, which is 27.8 million tonnes, or 5.3%, lower than the previous year. It is 20.8% lower than in 2005. According to the government, the result reflects the decrease in transport emissions due to COVID-19 pandemic restrictions, reduced fugitive emissions, and reductions in emissions from electricity; however, there were increased greenhouse gas emissions from the land and agriculture sectors.

<span class="mw-page-title-main">Energy in Slovenia</span> Overview of the production, consumption, import and export of energy and electricity in Slovenia

Total primary energy supply (TPES) in Slovenia was 6.80 Mtoe in 2019. In the same year, electricity production was 16.1 TWh, consumption was 14.9 TWh.

<span class="mw-page-title-main">Energy transition</span> Significant structural change in an energy system

An energy transition is a significant structural change in an energy system regarding supply and consumption. Currently, a transition to sustainable energy is underway to limit climate change. It is also called renewable energy transition. The current transition is driven by a recognition that global greenhouse-gas emissions must be drastically reduced. This process involves phasing-down fossil fuels and re-developing whole systems to operate on low carbon electricity. A previous energy transition took place during the industrial revolution and involved an energy transition from wood and other biomass to coal, followed by oil and most recently natural gas.

<span class="mw-page-title-main">Greenhouse gas emissions by China</span> Emissions of gases harmful to the climate from China

Greenhouse gas emissions by China are the largest of any country in the world both in production and consumption terms, and stem mainly from coal burning in China, including coal-fired power stations, coal mining, and blast furnaces producing iron and steel. When measuring production-based emissions, China emitted over 14 gigatonnes (Gt) CO2eq of greenhouse gases in 2019, 27% of the world total. When measuring in consumption-based terms, which adds emissions associated with imported goods and extracts those associated with exported goods, China accounts for 13 gigatonnes (Gt) or 25% of global emissions.

<span class="mw-page-title-main">World energy supply and consumption</span> Global production and usage of energy

World energy supply and consumption is global production and preparation of fuel, generation of electricity, energy transport, and energy consumption. It is a basic part of economic activity. It includes heat, but not energy from food.

References

  1. 1 2 "Energy Planning – an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved April 15, 2021.
  2. Bhatia, S.C. (2014). "Energy resources and their utilisation". Science Direct.
  3. Best Practices in Electric Utility Integrated Resource Planning, Synapse Energy Economics, June 2013. Retrieved January 9, 2015
  4. Li, Lili; Taeihagh, Araz (April 1, 2020). "An in-depth analysis of the evolution of the policy mix for the sustainable energy transition in China from 1981 to 2020". Applied Energy. 263: 114611. doi:10.1016/j.apenergy.2020.114611. ISSN   0306-2619. S2CID   212868659.
  5. Bill Prindle: Integrated Resource Planning: Delivering Energy Services at the Lowest Total Cost, ICF International, December 12, 2011. Retrieved January 9, 2015
  6. History of Integrated Resource Planning and EPAMP, Western Area Power Administration. Retrieved January 9, 2015
  7. "2022 renewable energy industry outlook". Deloitte.
  8. Raimondi, Pier Paolo (April 26, 2021). "US energy policy under the Biden administration: domestic and global dimensions".
  9. "The Biden Climate Plan: Part 1: What It Proposes". Labor Network for Sustainability. 2018–2021.
  10. Martire, S., Tuomasjukka, D., Lindner, M., Fitzgerald, J., & Castellani, V. (2015). Sustainability Impact Assessment for local energy supplies' development. Biomass and Bioenergy 83.
  11. Ringkjøb, Hans-Kristian; Haugan, Peter M.; Solbrekke, Ida Marie (November 1, 2018). "A review of modelling tools for energy and electricity systems with large shares of variable renewables". Renewable and Sustainable Energy Reviews. 96: 440–459. doi: 10.1016/j.rser.2018.08.002 . ISSN   1364-0321.
  12. "What is U.S. electricity generation by energy source?". U.S. Energy Information Administration. March 5, 2021. Retrieved October 31, 2021.{{cite web}}: CS1 maint: url-status (link)
  13. "Net-Zero America: Potential Pathways, Infrastructure, and Impacts" (PDF). October 29, 2021. Retrieved October 31, 2021.{{cite web}}: CS1 maint: url-status (link)
  14. "3 Reasons Why Nuclear is Clean and Sustainable". March 31, 2021.{{cite web}}: CS1 maint: url-status (link)
  15. "Nuclear Explained: Nuclear power and the environment". January 15, 2020.{{cite web}}: CS1 maint: url-status (link)
  16. "Nuclear Explained: Nuclear power and the environment". January 15, 2020.{{cite web}}: CS1 maint: url-status (link)
  17. "Global Emissions". Center For Climate and Energy Solutions. September 8, 2021.{{cite web}}: CS1 maint: url-status (link)
  18. "Global Emissions". Center For Climate and Energy Solutions. September 8, 2021.{{cite web}}: CS1 maint: url-status (link)
  19. "Global Emissions". Center For Climate and Energy Solutions. 2019.{{cite web}}: CS1 maint: url-status (link)
  20. Durns, Sean (March 20, 2014). "5 energy problems confronting India".
  21. "ENERGY PLANNING" (PDF).