English Electric System 4

Last updated

ICL System 4 system in 1975 ICL system 4, ZIPO, Trojmiasto-Przymorze (I197505).jpg
ICL System 4 system in 1975
ICL System 4 system magnetic tape area Angol utca 27., az Orszagos Tervhivatal szamitokozpontja, ICL SYSTEM 4-70 tipusu szamitogep. Fortepan 99262.jpg
ICL System 4 system magnetic tape area

The English Electric (later ICL) System 4 was a mainframe computer announced in 1965. It was derived from the RCA Spectra 70 range, itself a variant of the IBM System 360 architecture. [1]

The models in the range included the System 4-10 (cancelled), 4-30 (1967), 4-50 (1967, practically the same as the RCA 70/45), 4-70 (1968, designed by English Electric) [2] and 4-75. ICL documentation [3] also mentions a model 4-40. This was a slugged version of the 4-50, introduced when the 4-30 (intended to be the volume seller) was found to be underpowered and had to be withdrawn. The 4-10 was introduced as a satellite computer, but demand was very low, so it was withdrawn. Only the 4-50 and 4-70, and their successors, the 4-52 and 4-72, sold in any numbers. A slugged 4-72 (the 4-62) was introduced for sale in Eastern Europe.

The System 4-50 and 4-70 were intended for real-time applications, for they had four processor states, each with its own set of general-purpose registers (GPR). Although some states did not have all 16 GPRs, nevertheless, the design avoided having to save registers when switching between processor states. At the lowest level (P1) was the user state. The instructions available in this state were the non-privileged instructions of the IBM System 360. Intermediate levels dealt with various hardware interrupts. State P2 was the Interrupt Response State which performed tasks determined by the Interrupt Control State P3 (the next-highest processor state). The highest state, P4, was the emergency state, initiated in the event of a power failure or a machine check. In the case of power failure, the processor saved the volatile registers before shutting itself down in an orderly fashion. This task was completed within one millisecond from the onset of power failure and removal of power from the machine. For a machine check, an indication of the failure was given to the operator. [4] [5]

In processor states P1 and P2, 16 GPRs were available; in State P3, 6 GPRs were available, while in State P4, 5 GPRs were available. An interrupt status register and interrupt mask register were provided in each of the four processor states. The one set of floating-point registers was available to all processor states. [6]

Instruction times (microseconds) were as follows: [7]

                 4-50      4-70 Add      AR      5.28      1.1          A       8.88      2.1 Multiply MR     62.52      5.8          M      65.64      6.6 Divide   DR     90.81     10.8          D      94.89     11.6 Floating-point instructions Add      AE     19.2       3.6          AD     27.69      4.0 Multiply ME     49.42      6.2          MD    186.55     11.5 Divide   DE     83.0       9.3          DD    280.27     18.6 Halve    HER     6.00      1.1           HDR     8.16      1.8 

The System 4 could be supplied with medium-speed or high-speed card readers. 80-column cards were read at 800 cards per minute, or at up to 1,435 cards per minute, depending on the model. 51-column cards were read at 1,170 or 1,820 cards per minute, again depending on the model. The high speed reader took the cards end-wise.

Other peripheral devices available for the System 4 include: high-speed paper tape reader (1,500 characters/second) from 5, 7, or 8 channels; paper tape output punch (150 characters/second at any of the three tape widths given before); 80-column card punch (100 cards / minute); a magnetic tape controller with up to 8 magnetic tape units attached. Tape speeds for model 4453: 150 inches/second; models 4452 and 4450: 75 inches/second; and model 4454: 37.5 inches per second. Model 4454 was 7-track; the other models were 9-track. Removable magnetic discs were available: on Models 10 and 30, 203 cylinders, 10 surfaces per cylinder, with 2,888 bytes per track. Transfer rate was 156K bytes/second. Disc Drive Model 4425 provided 3781 data bytes per track, maximum disc capacity was 7,378,000 bytes. [8]

A variety of medium and high-speed drum printers could be supplied. Medium-speed printers printed at about 600 lines per minute using all available characters. The high-speed printers delivered 1080 lines per minute or 1000 lines per minute (depending on the model), printing all 64 characters per line with excellent print quality. A later model delivered up to 1150 lines per minute. When fitted with a drum having a 16-character set, the printing speed was 2,700 lines per minute. [9]

The operating system was multi-programming with a variable number of tasks. In the field, the system did not perform well on account of input data being stored on disc as 80-byte records, and output as 160-byte records. In about 1971, the then supplier, ICL, rewrote I/O modules to remove trailing blanks on input and output, and to block to 384 bytes, which improved performance considerably.

The non-privileged instruction set of the System 4-50 and 4-70 included the integer, floating-point, character, and decimal instructions—in short, the full non-privileged instruction set of the IBM System 360, except for Test and Set (TS). [10] The ICL System 4-30 included the half-word instructions, LH, AH, SH, MH, and divide halfword (DH), etc., but not the fullword instructions L, A, etc.

System 4 proved itself to have very efficient communications and was the basis for several successful real-time processing applications. The System 4-75 was introduced in an attempt to cover the real-time/time-sharing market, but few were sold. One System 4-75 was used at the ERCC to develop the EMAS interactive operating system. Another was used by the English Electric Computer Bureau subsidiary to develop and run the internally developed Interact 75 suite of time-sharing commercial packages for payroll and financial ledgers, but this proved unsuccessful, and the project was soon closed.

Related Research Articles

<span class="mw-page-title-main">IBM System/360</span> IBM mainframe computer family (1964–1977)

The IBM System/360 (S/360) is a family of mainframe computer systems that was announced by IBM on April 7, 1964, and delivered between 1965 and 1978. It was the first family of computers designed to cover both commercial and scientific applications and to cover a complete range of applications from small to large. The design distinguished between architecture and implementation, allowing IBM to release a suite of compatible designs at different prices. All but the only partially compatible Model 44 and the most expensive systems use microcode to implement the instruction set, which features 8-bit byte addressing and binary, decimal, and hexadecimal floating-point calculations.

The Honeywell 6000 series computers were rebadged versions of General Electric's 600-series mainframes manufactured by Honeywell International, Inc. from 1970 to 1989. Honeywell acquired the line when it purchased GE's computer division in 1970 and continued to develop them under a variety of names for many years.

<span class="mw-page-title-main">IBM 1620</span> Small IBM scientific computer released in 1959

The IBM 1620 was announced by IBM on October 21, 1959, and marketed as an inexpensive scientific computer. After a total production of about two thousand machines, it was withdrawn on November 19, 1970. Modified versions of the 1620 were used as the CPU of the IBM 1710 and IBM 1720 Industrial Process Control Systems.

<span class="mw-page-title-main">UNIVAC</span> Series of mainframe computer models

UNIVAC was a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations.

<span class="mw-page-title-main">IBM 1130</span> 16-bit IBM minicomputer introduced in 1965

The IBM 1130 Computing System, introduced in 1965, was IBM's least expensive computer at that time. A binary 16-bit machine, it was marketed to price-sensitive, computing-intensive technical markets, like education and engineering, succeeding the decimal IBM 1620 in that market segment. Typical installations included a 1 megabyte disk drive that stored the operating system, compilers and object programs, with program source generated and maintained on punched cards. Fortran was the most common programming language used, but several others, including APL, were available.

<span class="mw-page-title-main">HP 2100</span> Mid-1960s 16-bit computer series by Hewlitt Packard

The HP 2100 is a series of 16-bit minicomputers that were produced by Hewlett-Packard (HP) from the mid-1960s to early 1990s. Tens of thousands of machines in the series were sold over its twenty-five year lifetime, making HP the fourth largest minicomputer vendor during the 1970s.

<span class="mw-page-title-main">IBM System/3</span> IBM midrange computer (1969–1985)

The IBM System/3 was an IBM midrange computer introduced in 1969, and marketed until 1985. It was produced by IBM Rochester in Minnesota as a low-end business computer aimed at smaller organizations that still used IBM 1400 series computers or unit record equipment. The first member of what IBM refers to as their "midrange" line, it also introduced the RPG II programming language. It is the first ancestor in the product line whose current version is the IBM i series and includes the highly successful AS/400.

KDF9 was an early British computer designed and built by English Electric. The first machine came into service in 1964 and the last of 29 machines was decommissioned in 1980 at the National Physical Laboratory. The KDF9 was designed for, and used almost entirely in, the mathematical and scientific processing fields – in 1967, nine were in use in UK universities and technical colleges. The KDF8, developed in parallel, was aimed at commercial processing workloads.

<span class="mw-page-title-main">Bendix G-15</span>

The Bendix G-15 is a computer introduced in 1956 by the Bendix Corporation, Computer Division, Los Angeles, California. It is about 5 by 3 by 3 feet and weighs about 966 pounds (438 kg). The G-15 has a drum memory of 2,160 29-bit words, along with 20 words used for special purposes and rapid-access storage. The base system, without peripherals, cost $49,500. A working model cost around $60,000. It could also be rented for $1,485 per month. It was meant for scientific and industrial markets. The series was gradually discontinued when Control Data Corporation took over the Bendix computer division in 1963.

<span class="mw-page-title-main">International Computers and Tabulators</span>

International Computers and Tabulators or ICT was a British computer manufacturer, formed in 1959 by a merger of the British Tabulating Machine Company (BTM) and Powers-Samas. In 1963 it acquired the business computer divisions of Ferranti. It exported computers to many countries and in 1968 became part of International Computers Limited (ICL).

The ICT 1301 and its smaller derivative ICT 1300 were early business computers from International Computers and Tabulators. Typical of mid-sized machines of the era, they used core memory, drum storage and punched cards, but they were unusual in that they were based on decimal logic instead of binary.

CER-12 Third-generation digital computer

CER model 12 was a third-generation digital computer developed by Mihajlo Pupin Institute (Serbia) in 1971 and intended for "business and statistical data processing". However, the manufacturer also stated, at the time, that having in mind its architecture and performance, it can also be used successfully in solving "wide array of scientific and technical issues". Computer CER-12 consisted of multiple modules connected via wire wrap and connectors.

<span class="mw-page-title-main">NCR Century 100</span>

The NCR Century 100 was NCR's first all integrated circuit computer built in 1968. All logic gates were created by wire-wrapping NAND gates together to form flip-flops and other complex circuits. The console of the system had only 18 lights and switches and allowed entry of a boot routine, or changes to loaded programs or data in memory. A typewriter console was also available.

<span class="mw-page-title-main">CDC 160 series</span>

The CDC 160 series was a series of minicomputers built by Control Data Corporation. The CDC 160 and CDC 160-A were 12-bit minicomputers built from 1960 to 1965; the CDC 160G was a 13-bit minicomputer, with an extended version of the CDC 160-A instruction set, and a compatibility mode in which it did not use the 13th bit. The 160 was designed by Seymour Cray - reportedly over a long three-day weekend. It fit into the desk where its operator sat.

<span class="mw-page-title-main">RCA Spectra 70</span>

The RCA Spectra 70 was a line of electronic data processing (EDP) equipment manufactured by the Radio Corporation of America’s computer division beginning in April 1965. The Spectra 70 line included several CPU models, various configurations of core memory, mass-storage devices, terminal equipment, and a variety of specialized interface equipment.

<span class="mw-page-title-main">ICL 7500 series</span>

The ICL 7500 series was a range of terminals and workstations, that were developed by ICL during the 1970s for their new range ICL 2900 Series mainframe computers. The colour scheme was compatible with the 2900. The term 7561 is a commonly used though loose term for the interactive video aspects of the 7502 series. The 7501 and 7502 systems were known as Modular Terminal Processors in marketing publications. 7501 and 7502 systems were built at Blackhorse Road, Letchworth.

ICT 1900 was a family of mainframe computers released by International Computers and Tabulators (ICT) and later International Computers Limited (ICL) during the 1960s and 1970s. The 1900 series was notable for being one of the few non-American competitors to the IBM System/360, enjoying significant success in the European and British Commonwealth markets.

<span class="mw-page-title-main">Singer System 10</span> Business computer

NOTE: The correct written pronunciation of these Singer/ICL machines is Singer System Ten or ICL System Ten.

<span class="mw-page-title-main">IBM System/360 Model 20</span> Low-end IBM computer model from 1960s

The IBM System/360 Model 20 is the smallest member of the IBM System/360 family announced in November 1964. The Model 20 supports only a subset of the System/360 instruction set, with binary numbers limited to 16 bits and no floating point. In later years it would have been classified as a 16-bit minicomputer rather than a mainframe, but the term "minicomputer" was not current, and in any case IBM wanted to emphasize the compatibility of the Model 20 rather than its differences from the rest of the System/360 line. It does, however, have the full System/360 decimal instruction set, that allows for addition, subtraction, product, and dividend of up to 31 decimal digits.

<span class="mw-page-title-main">Raytheon 704</span> Minicomputer

The Raytheon 704 is a 16-bit minicomputer introduced by Raytheon in 1970. The basic machine contained 4 kwords (8 kB) of memory and a simple arithmetic logic unit (ALU) running at 1 MHz. It was normally operated with a Teletype Model 33 acting as a computer terminal. It sold for "less than $10,000".

References

  1. Lavington, Simon (19 May 2011). Moving Targets: Elliott-Automation and the Dawn of the Computer Age in Britain, 1947 – 67. Springer Science & Business Media. p. 457. ISBN   9781848829336.
  2. Campbell-Kelly, Martin (1989). ICL: a business and technical history. Table 11.4 English Electric System 4 announcements, 1965. For models 50 and 70: search for number 50. Clarendon Press. p. 243. ISBN   9780198539186.
  3. ICL System 4 Usercode Digest, reference P000/5m/2.70/WM, about 1970
  4. English Electric Computers, System 4-50 4-70 Usercode reference manual, Vol. 1, 14 February 1967.
  5. English Electric Computers, System 4-50 4-70 Usercode reference manual, Vol. 2, 14 February 1967, Chapter 9.
  6. English Electric Computers, System 4-50 4-70 Usercode reference manual, Vol. 2, 14 February 1967, Chapter 9.
  7. English Electric Computers, System 4-50 4-70 Usercode reference manual, Vol. 1, 14 February 1967.
  8. English Electric Computers, Hardware reference manual: Peripherals Vol 1, 1967.
  9. English Electric Computers, Hardware reference manual: Peripherals Vol 1, 1967.
  10. English Electric Computers, System 4-50 4-70 Usercode reference manual, Vol. 1, 14 February 1967.