Entropy-vorticity wave

Last updated

Entropy-vorticity waves (or sometimes entropy-vortex waves) refer to small-amplitude waves carried by the gas within which entropy, vorticity, density but not pressure perturbations are propagated. [1] Entropy-vortivity waves are essentially isobaric, incompressible, rotational perturbations along with entropy perturbations. [2] This wave differs from the other well-known small-amplitude wave that is a sound wave, which propagates with respect to the gas within which density, pressure but not entropy perturbations are propagated. The classification of small disturbances into acoustic, entropy and vortex modes were introduced by Leslie S. G. Kovasznay. [3] [4]

Entropy-vorticity waves are ubiquitous in supersonic problems, particularly those involving shock waves. Since these perturbations are carried by the gas, they are convected by the flow downstream of the shock wave, but they cannot be propagates in the upstream direction (behind the shock wave) unlike the acoustic wave, which can propagate upstream and can catch up the shock wave. As such, they are useful in understanding many highspeed flows and are important in many applications such as in solid-propellant rockets and detonations. [5] [6] [7]

Mathematical description

Consider a gas flow with a uniform velocity field and having a pressure , density , entropy and sound speed . Now we add small perturbations to these variables, which are denoted with a symbol . The perturbed variables being small quatities satisfy linearized form of the Euler equations, which is given by [1]

where in the continuity equation, we have used the relation (since and ) and the used the entropy equation to simplify it. Taking perturbations to be of the plane-wave form , the linearised equations can be reduced to algebraic equations

The last equation shows that either , which corresponds to sound waves in which entropy does not change or . The later condition indicating that perturbations are carried by the gas corresponds to the entropy-vortex wave. In this case, we have

where is the vorticity perturbation. As we can see, the entropy perturbation and the vorticity perturbation are independent meaning that one can have entropy waves without vorticity waves or vorticity waves with entropy waves or both entropy and vorticity waves.

In non-reacting multicomponent gas, we can also have compositional perturbations since in this case, , where is the mass fraction of ith specices of total chemical species. In the entropy-vorticity wave, we have then

Related Research Articles

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

<span class="mw-page-title-main">Wave equation</span> Differential equation important in physics

The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves or electromagnetic waves. It arises in fields like acoustics, electromagnetism, and fluid dynamics.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Potential flow</span> Velocity field as the gradient of a scalar function

In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity present in the flow.

The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid. The governing equation is:

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

<span class="mw-page-title-main">Euler equations (fluid dynamics)</span> Set of quasilinear hyperbolic equations governing adiabatic and inviscid flow

In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.

In physics, chemistry and biology, a potential gradient is the local rate of change of the potential with respect to displacement, i.e. spatial derivative, or gradient. This quantity frequently occurs in equations of physical processes because it leads to some form of flux.

In fluid mechanics, the Taylor–Proudman theorem states that when a solid body is moved slowly within a fluid that is steadily rotated with a high angular velocity , the fluid velocity will be uniform along any line parallel to the axis of rotation. must be large compared to the movement of the solid body in order to make the Coriolis force large compared to the acceleration terms.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

In physics, magnetosonic waves, also known as magnetoacoustic waves, are low-frequency compressive waves driven by mutual interaction between an electrically conducting fluid and a magnetic field. They are associated with compression and rarefaction of both the fluid and the magnetic field, as well as with an effective tension that acts to straighten bent magnetic field lines. The properties of magnetosonic waves are highly dependent on the angle between the wavevector and the equilibrium magnetic field and on the relative importance of fluid and magnetic processes in the medium. They only propagate with frequencies much smaller than the ion cyclotron or ion plasma frequencies of the medium, and they are nondispersive at small amplitudes.

In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.

<span class="mw-page-title-main">Navier–Stokes existence and smoothness</span> Millennium Prize Problem

The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications. However, theoretical understanding of the solutions to these equations is incomplete. In particular, solutions of the Navier–Stokes equations often include turbulence, which remains one of the greatest unsolved problems in physics, despite its immense importance in science and engineering.

The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

<span class="mw-page-title-main">Mild-slope equation</span> Physics phenomenon and formula

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

The Clausius–Duhem inequality is a way of expressing the second law of thermodynamics that is used in continuum mechanics. This inequality is particularly useful in determining whether the constitutive relation of a material is thermodynamically allowable.

Multipole radiation is a theoretical framework for the description of electromagnetic or gravitational radiation from time-dependent distributions of distant sources. These tools are applied to physical phenomena which occur at a variety of length scales - from gravitational waves due to galaxy collisions to gamma radiation resulting from nuclear decay. Multipole radiation is analyzed using similar multipole expansion techniques that describe fields from static sources, however there are important differences in the details of the analysis because multipole radiation fields behave quite differently from static fields. This article is primarily concerned with electromagnetic multipole radiation, although the treatment of gravitational waves is similar.

References

  1. 1 2 Landau, L. D., & Lifshitz, E. M. (2013). Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, Volume 6 (Vol. 6). Elsevier. Page 316, section 82.
  2. Clavin, P., & Searby, G. (2016). Combustion waves and fronts in flows: flames, shocks, detonations, ablation fronts and explosion of stars. Cambridge University Press. Page. 262.
  3. Kovasznay, L. S. (1953). Turbulence in supersonic flow. Journal of the Aeronautical Sciences, 20(10), 657-674.
  4. Chu, B. T., & Kovásznay, L. S. (1958). Non-linear interactions in a viscous heat-conducting compressible gas. Journal of Fluid Mechanics, 3(5), 494-514.
  5. Flandro, G. A. (1995). Effects of vorticity on rocket combustion stability. Journal of Propulsion and Power, 11(4), 607-625.
  6. Liñán Martínez, A., Kurdyumov, V., & Soler, J. (2004). The flow field in the slender combustion chambers of solid propellant rockets.
  7. Clavin, P., & Williams, F. A. (2012). Analytical studies of the dynamics of gaseous detonations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1960), 597-624.