Environmental systems analysis

Last updated

Environmental systems analysis (ESA) is a systematic and systems based approach for describing human actions impacting on the natural environment to support decisions and actions aimed at perceived current or future environmental problems. Impacts of different types of objects are studied that ranges from projects, programs and policies, to organizations, and products. [1] [2] Environmental systems analysis encompasses a family of environmental assessment tools and methods, including life cycle assessment (LCA), material flow analysis (MFA) and substance flow analysis (SFA), and environmental impact assessment (EIA), among others. [3] [4] [5]

Human impact on the environment human impacts on environment

Human impact on the environment or anthropogenic impact on the environment includes changes to biophysical environments and ecosystems, biodiversity, and natural resources caused directly or indirectly by humans, including global warming, environmental degradation, mass extinction and biodiversity loss, ecological crisis, and ecological collapse. Modifying the environment to fit the needs of society is causing severe effects, which become worse as the problem of human overpopulation continues. Some human activities that cause damage to the environment on a global scale include human reproduction, overconsumption, overexploitation, pollution, and deforestation, to name but a few. Some of the problems, including global warming and biodiversity loss pose an existential risk to the human race, and overpopulation causes those problems.

Contents

Overview

ESA studies aims at describing the environmental repercussions of defined human activities. These activities are mostly effective through use of different technologies altering material and energy flows, or (in)directly changing ecosystems (e.g. through changed land-use, agricultural practices, logging etc.), leading to undesired environmental impacts in a, more or less, specifically defined geographical area, and time, ranging from local to global. The basis for the analytical procedures used in ESA studies is the perception of flows of matter and energy associated to causal chains linking human activities to the environmental changes of concern. [6] Some methods are focusing different parts or aspects of the energy/matter flows or the causal chains, where flow models like MFA or LCA deals with the more or less human controlled societal flows while, e.g. ecological risk assessment (ERA) is related to disentangling environmental causal chains. Environmental systems analysis studies has been suggested to be divided between "full" and "attributional" approaches. The full mode covers identified material and energy flows and associated processes leading to environmental impacts. The attributional approach, on the other hand, is based on an analysis of the processes needed to fulfil a certain purpose such as the function that a product delivers. [7] The combination of methods (e.g. LCA and environmental risk assessment) has also been of interest [8]

Methods can be grouped into procedural and analytical approaches. The procedural ones (e.g. EIA or strategic environmental assessment, SEA) focus on the procedure around the analysis, while the analytical ones (e.g. LCA, MFA) put the main focus on technical aspects of the analysis, and can be used as parts of the procedural approaches. Regarding the impacts studied, the environmental issues cover both effects of natural resource use and other environmental impacts, e.g. due to emissions of chemicals, or other agents. In addition, environmental systems analysis studies can cover or be based on economic accounts (life cycle costing, cost-benefit analysis, input-output analysis, systems for economic and environmental accounts), or consider social aspects. The objects of study are distinguished into five categories. These are projects, policies and plans, regions or nations, firms and other organizations, products and functions, and substances. [9] [10] [11]

Further, environmental systems analysis studies are often used to support decision making and it is acknowledged that the decision context varies and is of importance. This regards, for example, that business activities can be related in different ways to the products and other objects studied in environmental systems analysis. [12] [13]

History

A perception of a coherent family of tools and methods for ESA started to become established by findings published in the year 2000. Common characteristics were found to recently have appeared across tools and methods that had previously been seen as distinct from each other. The characteristics were full and attribution approaches, respectively, and the tools and methods were each earlier determined by one unique combination of flow object, spatial boundary and relation to time. [14]

An overview of tools and methods for ESA was published five years later. It was to a large extent based on a series of reports and also drew on the life cycle management project CHAINET. The series of reports covered for example an introduction to tools for Esa that also related them to decision situations, and a study on differences and similarities between tools for esa where a short case study on heat production was included. In the CHAINET project, commissioned by the EU Environment and Climate programme, analytical tools for decision making were studied regarding demand and supply of environmental information, while procedural ESA approaches were not covered. [15] [16] [17] [18]

An expansion of the field has occurred and a number of scientific journals publish extensively on the application of ESA methods e.g. Energy and Environmental Science, Environmental Science and Technology, Journal of Cleaner Production, International Journal of Life-cycle Assessment, and Journal of Industrial Ecology

Tools and methods

The environmental systems analysis tools and methods include: [19]

See also

Related Research Articles

Industrial ecology (IE) is the study of material and energy flows through industrial systems. The global industrial economy can be modelled as a network of industrial processes that extract resources from the Earth and transform those resources into commodities which can be bought and sold to meet the needs of humanity. Industrial ecology seeks to quantify the material flows and document the industrial processes that make modern society function. Industrial ecologists are often concerned with the impacts that industrial activities have on the environment, with use of the planet's supply of natural resources, and with problems of waste disposal. Industrial ecology is a young but growing multidisciplinary field of research which combines aspects of engineering, economics, sociology, toxicology and the natural sciences.

Life-cycle assessment is a technique to assess environmental impacts associated with all the stages of a product's life from raw material extraction through materials processing, manufacture, distribution, use, repair and maintenance, and disposal or recycling. Designers use this process to help critique their products. LCAs can help avoid a narrow outlook on environmental concerns by:

Over the years, as countries and regions around the world began to develop, it slowly became evident that industrialization and economic growth come hand in hand with environmental degradation. Eco-Efficiency has been proposed as one of the main tools to promote a transformation from unsustainable development to one of sustainable development. It is based on the concept of creating more goods and services while using fewer resources and creating less waste and pollution. “It is measured as the ratio between the (added) value of what has been produced and the (added) environment impacts of the product or service .” The term was coined by the World Business Council for Sustainable Development (WBCSD) in its 1992 publication “Changing Course,” and at the 1992 Earth Summit, eco-efficiency was endorsed as a new business concept and means for companies to implement Agenda 21 in the private sector. Ergo the term has become synonymous with a management philosophy geared towards sustainability, combining ecological and economic efficiency.

Social impact assessment (SIA) is a methodology to review the social effects of infrastructure projects and other development interventions. Although SIA is usually applied to planned interventions, the same techniques can be used to evaluate the social impact of unplanned events, for example disasters, demographic change and epidemics.

Environmental accounting is a subset of accounting proper, its target being to incorporate both economic and environmental information. It can be conducted at the corporate level or at the level of a national economy through the System of Integrated Environmental and Economic Accounting, a satellite system to the National Accounts of Countries.

Ecodesign is an approach to designing products with special consideration for the environmental impacts of the product during its whole lifecycle. In a life cycle assessment, the life cycle of a product is usually divided into procurement, manufacture, use, and disposal.

Carbon accounting refers generally to processes undertaken to "measure" amounts of carbon dioxide equivalents emitted by an entity. It is used by states, corporations and individuals to create the carbon credit commodity traded on carbon markets. Correspondingly, examples for products based upon forms of carbon accounting can be found in national inventories, corporate environmental reports or carbon footprint calculators. Likening sustainability measurement, as an instance of ecological modernisation discourses and policy, carbon accounting is hoped to provide a factual ground for carbon-related decision-making. However, social scientific studies of accounting challenge this hope, pointing to the socially constructed character of carbon conversion factors or of the accountants' work practice which cannot implement abstract accounting schemes into reality.

Design for the Environment (DfE) is a design approach to reduce the overall human health and environmental impact of a product, process or service, where impacts are considered across its life cycle. Different software tools have been developed to assist designers in finding optimized products or processes/services. DfE is also the original name of a United States Environmental Protection Agency (EPA) program, created in 1992, that works to prevent pollution, and the risk pollution presents to humans and the environment. The program provides information regarding safer chemical formulations for cleaning and other products. EPA renamed its program "Safer Choice" in 2015.

Product-service systems (PSS) are business models that provide for cohesive delivery of products and services. PSS models are emerging as a means to enable collaborative consumption of both products and services, with the aim of pro-environmental outcomes.

Whole-life cost, or Life-cycle cost (LCC), refers to the total cost of ownership over the life of an asset. Also commonly referred to as "cradle to grave" or "womb to tomb" costs. Costs considered include the financial cost which is relatively simple to calculate and also the environmental and social costs which are more difficult to quantify and assign numerical values. Typical areas of expenditure which are included in calculating the whole-life cost include planning, design, construction and acquisition, operations, maintenance, renewal and rehabilitation, depreciation and cost of finance and replacement or disposal.

Policy Impact Assessments (IAs) are formal, evidence-based procedures that assess the economic, social, and environmental effects of public policy. They have been incorporated into policy making in the OECD countries and the European Commission.

Urban metabolism is a model to facilitate the description and analysis of the flows of the materials and energy within cities, such as undertaken in a material flow analysis of a city. It provides researchers with a metaphorical framework to study the interactions of natural and human systems in specific regions. From the beginning, researchers have tweaked and altered the parameters of the urban metabolism model. C. Kennedy and fellow researchers have produced a clear definition in the 2007 paper The Changing Metabolism of Cities claiming that urban metabolism is "the sum total of the technical and socio-economic process that occur in cities, resulting in growth, production of energy and elimination of waste." With the growing concern of climate change and atmospheric degradation, the use of the urban metabolism model has become a key element in determining and maintaining levels of sustainability and health in cities around the world. Urban metabolism provides a unified or holistic viewpoint to encompass all of the activities of a city in a single model.

An economic input-output life-cycle assessment, or EIO-LCA involves the use of aggregate sector-level data to quantify the amount of environmental impact that can be directly attributed to each sector of the economy and how much each sector purchases from other sectors in producing its output. Combining such data sets can enable accounting for long chains, which somewhat alleviates the scoping problem of traditional Life-cycle assessments. EIO-LCA analysis traces out the various economic transactions, resource requirements and environmental emissions required for producing a particular product or service.

Eco-costs

Eco-costs are the costs of the environmental burden of a product on the basis of prevention of that burden. They are the costs which should be made to reduce the environmental pollution and materials depletion in our world to a level which is in line with the carrying capacity of our earth.

Circular economy regenerative system in which resource input and waste, emission, and energy leakage, are minimised

A circular economy is an economic system aimed at minimising waste and making the most of resources. This regenerative approach is in contrast to the traditional linear economy, which has a 'take, make, dispose' model of production. In a circular system resource input and waste, emission, and energy leakage are minimized by slowing, closing, and narrowing energy and material loops; this can be achieved through long-lasting design, maintenance, repair, reuse, remanufacturing, refurbishing, and recycling, all implemented via corporate and social entrepreneurship. Proponents of the circular economy suggest that a sustainable world does not mean a drop in the quality of life for consumers, and can be achieved without loss of revenue or extra costs for manufacturers. The argument is that circular business models can be as profitable as linear models, allowing us to keep enjoying similar products and services.

Thomas Lindhqvist is a Swedish academic. He is credited for introducing the concept of extended producer responsibility. He is currently Associate Professor and Director of Research Programs at the International Institute for Industrial Environmental Economics at Lund University in Sweden

MuSIASEM or Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism, is a method of accounting used to analyse socio-ecosystems and to simulate possible patterns of development. It is based on maintaining coherence across scales and different dimensions of quantitative assessments generated using different metrics. It is designed to detect and analyze patterns in the societal use of resources and the impacts they create on the environment. The approach was created around 1997 by Mario Giampietro and Kozo Mayumi, and has been developed since then by the members of the IASTE group at the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona and its external collaborators. MuSIASEM strives to characterize metabolic patterns of Socio-Ecological Systems. This integrated approach allows for a quantitative implementation of the DPSIR framework and application as a decision support tool. Different alternatives of the option space can be checked in terms of feasibility, viability and desirability. The ability to integrate quantitative assessments across dimensions and scales makes MuSIASEM particularly suited for different types of sustainability analysis: (i) the nexus between food, energy, water and land uses; (ii) urban metabolism; (iii) waste metabolism; (iv) tourism metabolism; (v) rural development.

Henrik Wenzel is a Danish engineer and head of SDU Life Cycle Engineering at University of Southern Denmark (SDU).

Alternatives assessment or alternatives analysis is a problem-solving approach used in environmental design, technology, and policy. It aims to minimize environmental harm by comparing multiple potential solutions in the context of a specific problem, design goal, or policy objective. It is intended to inform decision-making in situations with many possible courses of action, a wide range of variables to consider, and significant degrees of uncertainty. Alternatives assessment was originally developed as a robust way to guide precautionary action and avoid paralysis by analysis; authors such as O'Brien have presented alternatives assessment as an approach that is complementary to risk assessment, the dominant decision-making approach in environmental policy. Likewise, Ashford has described the similar concept of technology options analysis as a way to generate innovative solutions to the problems of industrial pollution more effectively than through risk-based regulation.

Edeltraud Günther German economist

Edeltraud Günther is a German economist and since 1996 professor at the Chair of Business Management, esp. Environmental Management and Accounting at the TU Dresden.

References

  1. Finnveden, G.; Moberg, A. (2005). "Environmental systems analysis tools – An overview". Journal of Cleaner Production 13 (12): 1165–1173. doi:10.1016/j.jclepro.2004.06.004
  2. Udo de Haes, H.; Heijungs, R.; Huppes, G.; Van Der Voet, E.; Hettelingh, J.-P. (2000). "Full mode and attribution mode in environmental analysis". Journal of Industrial Ecology 4 (1): 45–56. doi:10.1162/108819800569285
  3. Finnveden, G.; Moberg, A. (2005). "Environmental systems analysis tools – An overview". Journal of Cleaner Production 13 (12): 1165–1173. doi:10.1016/j.jclepro.2004.06.004
  4. Höjer, M.; Ahlroth, S.; Dreborg, K.-H.; Ekvall, T.; Finnveden, G.; Hjelm, O.; Hochschorner, E.; Nilsson, M.; Palm, V. (2008). "Scenarios in selected tools for environmental systems analysis". Journal of Cleaner Production 16 (18): 1958–1970. doi:10.1016/j.jclepro.2008.01.008
  5. Eriksson, O.; Frostell, B.; Björklund, A.; Assefa, G.; Sundqvist, J.-O.; Granath, J.; Carlsson, M.; Baky, A.; Thyselius, L. (2002). "ORWARE - A simulation tool for waste management". Resources, Conservation and Recycling 36 (4): 287–307. doi:10.1016/S0921-3449(02)00031-9
  6. Udo de Haës, H.A. Jolliet, O., Finnveden, G., Hauschild, M., Krewitt, W., Müller-Wenk, R. (1999). Best available practice regarding impact categories and category indicators in life cycle impact assessment: Background document for the second working group on life cycle impact assessment of SETAC-Europe (WIA-2)Int. J. LCA 4 (3) 167-174
  7. Udo de Haes, H.; Heijungs, R.; Huppes, G.; Van Der Voet, E.; Hettelingh, J.-P. (2000). "Full mode and attribution mode in environmental analysis". Journal of Industrial Ecology 4 (1): 45–56. doi:10.1162/108819800569285
  8. Harder, R., Holmquist, H., Molander, S., Svanström, M., Peters, G. M. (2015) Review of Environmental Assessment Case Studies Blending Elements of Risk Assessment and Life Cycle Assessment. Environmental Science & Technology 49 (22) 13083-13093
  9. Finnveden, G.; Moberg, A. (2005). "Environmental systems analysis tools – An overview". Journal of Cleaner Production 13 (12): 1165–1173. doi:10.1016/j.jclepro.2004.06.004
  10. Udo de Haes, H.; Heijungs, R.; Huppes, G.; Van Der Voet, E.; Hettelingh, J.-P. (2000). "Full mode and attribution mode in environmental analysis". Journal of Industrial Ecology 4 (1): 45–56. doi:10.1162/108819800569285
  11. Baumann, H.; Tillman, A.-M. (2004). The hitch hiker's guide to LCA: An orientation in life cycle assessment methodology and application. Lund, Sweden: Studentlitteratur. ISBN   978-91-44-02364-9
  12. Finnveden, G.; Moberg, A. (2005). "Environmental systems analysis tools – An overview". Journal of Cleaner Production 13 (12): 1165–1173. doi:10.1016/j.jclepro.2004.06.004
  13. Baumann, H.; Tillman, A.-M. (2004). The hitch hiker's guide to LCA: An orientation in life cycle assessment methodology and application. Lund, Sweden: Studentlitteratur. ISBN   978-91-44-02364-9
  14. Udo de Haes, H.; Heijungs, R.; Huppes, G.; Van Der Voet, E.; Hettelingh, J.-P. (2000). "Full mode and attribution mode in environmental analysis". Journal of Industrial Ecology 4 (1): 45–56. doi:10.1162/108819800569285
  15. Finnveden, G.; Moberg, A. (2005). "Environmental systems analysis tools – An overview". Journal of Cleaner Production 13 (12): 1165–1173. doi:10.1016/j.jclepro.2004.06.004
  16. Moberg, Å.; Finnveden, G.; Johansson, J.; Steen, P. (1999). Miljösystemanalytiska verktyg: En introduktion med koppling till beslutssituationer (Environmental systems analysis tool: An introduction in relation to decision situations) [AFR Rapport 251]. Stockholm: AFN, Naturvårdsverket
  17. Moberg, Å. (1999). Environmental systems analytical tools: Differences and similarities including a brief case study on heat production using ecological footprint, MIPS, LCA and exergy analysis. MSc thesis, Systems Ecology, Stockholm University, Stockholm
  18. Wrisberg, N.; Udo de Haes, H. A.; Triebswetter, U.; Eder, P.; Clift, R. (2002). Analytical tools for environmental design and management in a systems perspective. Dordrecht: Kluwer Academic Publishers
  19. Finnveden, G.; Moberg, A. (2005). "Environmental systems analysis tools – An overview". Journal of Cleaner Production 13 (12): 1165–1173. doi:10.1016/j.jclepro.2004.06.004