Material flow accounting

Last updated

Material flow accounting (MFA) is the study of material flows on a national or regional scale. It is therefore sometimes also referred to as regional, national or economy-wide material flow analysis.

Contents

Introduction

Material flow accounting provides economy-wide data on material use. Through international standardization, this data has become reliable and comparable across countries. [1] [2] Increasingly, the data are also being made available in medium- to long-term time series allowing for the analysis of past trends as well as potential future developments. Material flow accounts provide information on the material inputs into, the changes in material stock within, and the material outputs in the form of exports to other economies or discharges to the environment of an economy. Material flow accounting can be used in national planning, especially for scarce resources, and also allows for forecasting. The method can be used to assess environmental burdens associated with the economic activities of a nation and to determine how material intensive an economy is.

The principle concept underlying MFA is a simple model of this interrelation between the economy and the environment, in which the economy is an embedded subsystem of the environment. Similar to living beings, this subsystem is dependent on a constant throughput of materials and energy. Raw materials, water and air are extracted from the natural system as inputs, transformed into products and finally re-transferred to the natural system as outputs (waste and emissions). In order to highlight the similarity to natural metabolic processes, the terms "industrial" or "societal" metabolism have been introduced. [3]

In MFA studies for a region or on a national level the flows of materials between the natural environment and the economy are analyzed and quantified on a physical level. The focus may be on individual substances (e.g. Cadmium flows), specific materials, or bulk material flows (e.g. steel and steel scrap flows within an economy). Researchers in this field are organized in the Socio-Economic Metabolism (SEM) section [4] of the International Society for Industrial Ecology (ISIE). [5]

Statistics related to material flow accounting are usually compiled by national statistical offices, using economic, agricultural and trade statistics measuring the exchange of material between different products available in an economy.

Material flow accounting scheme Material Flow Accounting Scheme.png
Material flow accounting scheme

Scope and indicators

Aside from calculating the net additions to stock (NAS) as a balancing item, flows within the economy are not considered (advances are currently being made in the field of dynamic stock modelling). MFA covers all solid, gaseous, and liquid materials, mobilized by humans or by their livestock, with the exception of bulk water and air. The unit of measurement is most commonly (metric) tonnes per year (t/a). Flows are distinguished by whether they are extracted domestically (domestic extraction, DE) or are trade flows (imports or exports). Materials are most commonly grouped according to four main material categories: biomass, fossil energy carriers, metals, and non-metallic minerals. The former category may be further differentiated by type of use into industrial and construction minerals. It is very important to note that MFA seeks to provide a complete picture of an economy's material use so that materials are included in these accounts irrespective of whether or not they have direct market value. The most prominent non-market flows covered by MFA are grazed biomass and used crop residues as well as waste rock extracted during mining activities. In 2010, these material flows accounted for 21% of global extraction.

The data collected in MFA is used to calculate several different standardized indicators:

Economy-wide MFA is a satellite system to the system of national accounts and provides a rich empirical database for analytical studies. More information on how the statistics are collected, under what legal framework and how they are defined is available in Economy-wide material flow accounts.

In addition, the following indicators are may be used in material flow accounting:

See also

Related Research Articles

<span class="mw-page-title-main">Balance of trade</span> Difference between the monetary value of exports and imports

Balance of trade can be measured in terms of commercial balance, or net exports. Balance of trade is the difference between the monetary value of a nation's exports and imports over a certain time period. Sometimes a distinction is made between a balance of trade for goods versus one for services. The balance of trade measures a flow variable of exports and imports over a given period of time. The notion of the balance of trade does not mean that exports and imports are "in balance" with each other.

<span class="mw-page-title-main">Economy of Denmark</span>

The economy of Denmark is a modern high-income and mixed economy. The economy of Denmark is dominated by the service sector with 80% of all jobs, whereas about 11% of all employees work in manufacturing and 2% in agriculture. The nominal gross national income per capita was the ninth-highest in the world at $68,827 in 2023.

<span class="mw-page-title-main">Gross domestic product</span> Market value of goods and services produced within a country

Gross domestic product (GDP) is a monetary measure of the market value of all the final goods and services produced in a specific time period by a country or countries. GDP is most often used by the government of a single country to measure its economic health. Due to its complex and subjective nature, this measure is often revised before being considered a reliable indicator.

A variety of measures of national income and output are used in economics to estimate total economic activity in a country or region, including gross domestic product (GDP), gross national product (GNP), net national income (NNI), and adjusted national income. All are specially concerned with counting the total amount of goods and services produced within the economy and by various sectors. The boundary is usually defined by geography or citizenship, and it is also defined as the total income of the nation and also restrict the goods and services that are counted. For instance, some measures count only goods & services that are exchanged for money, excluding bartered goods, while other measures may attempt to include bartered goods by imputing monetary values to them.

In economics, output is the quantity and quality of goods or services produced in a given time period, within a given economic network, whether consumed or used for further production. The economic network may be a firm, industry, or nation. The concept of national output is essential in the field of macroeconomics. It is national output that makes a country rich, not large amounts of money.

In economics, an input–output model is a quantitative economic model that represents the interdependencies between different sectors of a national economy or different regional economies. Wassily Leontief (1906–1999) is credited with developing this type of analysis and earned the Nobel Prize in Economics for his development of this model.

Greenhouse gas inventories are emission inventories of greenhouse gas emissions that are developed for a variety of reasons. Scientists use inventories of natural and anthropogenic (human-caused) emissions as tools when developing atmospheric models. Policy makers use inventories to develop strategies and policies for emissions reductions and to track the progress of those policies.

Material flow analysis (MFA), also referred to as substance flow analysis (SFA), is an analytical method to quantify flows and stocks of materials or substances in a well-defined system. MFA is an important tool to study the bio-physical aspects of human activity on different spatial and temporal scales. It is considered a core method of industrial ecology or anthropogenic, urban, social and industrial metabolism. MFA is used to study material, substance, or product flows across different industrial sectors or within ecosystems. MFA can also be applied to a single industrial installation, for example, for tracking nutrient flows through a waste water treatment plant. When combined with an assessment of the costs associated with material flows this business-oriented application of MFA is called material flow cost accounting. MFA is an important tool to study the circular economy and to devise material flow management. Since the 1990s, the number of publications related to material flow analysis has grown steadily. Peer-reviewed journals that publish MFA-related work include the Journal of Industrial Ecology, Ecological Economics, Environmental Science and Technology, and Resources, Conservation, and Recycling.

In economics, gross value added (GVA) is the measure of the value of goods and services produced in an area, industry or sector of an economy. "Gross value added is the value of output minus the value of intermediate consumption; it is a measure of the contribution to GDP made by an individual producer, industry or sector; gross value added is the source from which the primary incomes of the System of National Accounts (SNA) are generated and is therefore carried forward into the primary distribution of income account."

Urban metabolism is a model to facilitate the description and analysis of the flows of the materials and energy within cities, such as undertaken in a material flow analysis of a city. It provides researchers with a metaphorical framework to study the interactions of natural and human systems in specific regions. From the beginning, researchers have tweaked and altered the parameters of the urban metabolism model. C. Kennedy and fellow researchers have produced a clear definition in the 2007 paper The Changing Metabolism of Cities claiming that urban metabolism is "the sum total of the technical and socio-economic process that occur in cities, resulting in growth, production of energy and elimination of waste." With the growing concern of climate change and atmospheric degradation, the use of the urban metabolism model has become a key element in determining and maintaining levels of sustainability and health in cities around the world. Urban metabolism provides a unified or holistic viewpoint to encompass all of the activities of a city in a single model.

Domestic material consumption is a measurement of the total amount of material directly used in an economy, excluding hidden flows. DMC equals DMI minus exports.

System of Environmental-Economic Accounting (SEEA) is a framework to compile statistics linking environmental statistics to economic statistics. SEEA is described as a satellite system to the United Nations System of National Accounts (SNA). This means that the definitions, guidelines and practical approaches of the SNA are applied to the SEEA. This system enables environmental statistics to be compared to economic statistics as the system boundaries are the same after some processing of the input statistics. By analysing statistics on the economy and the environment at the same time it is possible to show different patterns of sustainability for production and consumption. It can also show the economic consequences of maintaining a certain environmental standard.

Economy-wide material flow accounts (EW-MFA) is a framework to compile statistics linking flows of materials from natural resources to a national economy. EW-MFA are descriptive statistics, in physical units such as tonnes per year.

<span class="mw-page-title-main">Social metabolism</span> Study of materials and energy flows between nature and society

Social metabolism or socioeconomic metabolism is the set of flows of materials and energy that occur between nature and society, between different societies, and within societies. These human-controlled material and energy flows are a basic feature of all societies but their magnitude and diversity largely depend on specific cultures, or sociometabolic regimes. Social or socioeconomic metabolism is also described as "the self-reproduction and evolution of the biophysical structures of human society. It comprises those biophysical transformation processes, distribution processes, and flows, which are controlled by humans for their purposes. The biophysical structures of society and socioeconomic metabolism together form the biophysical basis of society."

<span class="mw-page-title-main">Eco-economic decoupling</span> Economy able to grow without corresponding increases in environmental pressure

In economic and environmental fields, decoupling refers to an economy that would be able to grow without corresponding increases in environmental pressure. In many economies, increasing production (GDP) raises pressure on the environment. An economy that would be able to sustain economic growth while reducing the amount of resources such as water or fossil fuels used and delink environmental deterioration at the same time would be said to be decoupled. Environmental pressure is often measured using emissions of pollutants, and decoupling is often measured by the emission intensity of economic output.

Natural capital accounting is the process of calculating the total stocks and flows of natural resources and services in a given ecosystem or region. Accounting for such goods may occur in physical or monetary terms. This process can subsequently inform government, corporate and consumer decision making as each relates to the use or consumption of natural resources and land, and sustainable behaviour.

Land footprint is the real amount of land, wherever it is in the world, that is needed to produce a product, or used by an organisation or by a nation.

Environmentally extended input–output analysis (EEIOA) is used in environmental accounting as a tool which reflects production and consumption structures within one or several economies. As such, it is becoming an important addition to material flow accounting.

Sustainable Materials Management is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how a society thinks about the use of natural resources and environmental protection. By looking at a product's entire lifecycle new opportunities can be found to reduce environmental impacts, conserve resources, and reduce costs.

A circular economy is an alternative way countries manage their resources, where instead of using products in the traditional linear make, use, dispose method, resources are used for their maximum utility throughout its life cycle and regenerated in a cyclical pattern minimizing waste. They strive to create economic development through environmental and resource protection. The ideas of a circular economy were officially adopted by China in 2002, when the 16th National Congress of the Chinese Communist Party legislated it as a national endeavour, though various sustainability initiatives were implemented in the previous decades starting in 1973. China adopted the circular economy due to the environmental damage and resource depletion that was occurring from going through its industrialization process. China is currently a world leader in the production of resources, where it produces 46% of the worlds aluminum, 50% of steel and 60% of cement, while it has consumed more raw materials than all the countries a part of the Organisation for Economic Co-operation and Development (OECD) combined. In 2014, China created 3.2 billion tonnes of industrial solid waste, where 2 billion tonnes were recovered using recycling, incineration, reusing and composting. By 2025, China is anticipated to produce up to one quarter of the worlds municipal solid waste.

References

  1. Fischer-Kowalski, M., Krausmann, F., Giljum, S., Lutter, S., Mayer, A., Bringezu, S., Moriguchi, Y., Schütz, H., Schandl, H., Weisz, H., 2011. Methodology and Indicators of Economy-wide Material Flow Accounting. J. Ind. Ecol. 15, 855–876. http://www.pik-potsdam.de/members/weisz/recent-publications-1/JIEMFAStateoftheart2011.pdf
  2. Eurostat, 2012. Economy-wide Material Flow Accounts (EW-MFA) - Compilation Guide 2012. Eurostat, Luxembourg. http://epp.eurostat.ec.europa.eu/portal/page/portal/environmental_accounts/documents/Economy-wide%20material%20flow%20accounts%20compilation%20guide%20%20-.pdf%5B%5D
  3. Definition taken from http://www.materialflows.net
  4. "Home". isie-sem.blogspot.co.at.
  5. "Home". is4ie.org.
  6. OECD Glossary http://stats.oecd.org/glossary/detail.asp?ID=6472
  7. OECD Glossary http://stats.oecd.org/glossary/detail.asp?ID=6403
  8. "Materialflows.net: Indicators on the economy-wide level". Archived from the original on 2014-03-05. Retrieved 2014-02-24.