Equation of the center

Last updated
Simulated view of an object in an elliptic orbit, as seen from the focus of the orbit. The view rotates with the mean anomaly, so the object appears to oscillate back and forth across this mean position with the equation of the center. The object also appears to become smaller and larger as it moves farther away and nearer because of the eccentricity of the orbit. A marker (red) shows the position of the periapsis. Eoc anim.gif
Simulated view of an object in an elliptic orbit, as seen from the focus of the orbit. The view rotates with the mean anomaly, so the object appears to oscillate back and forth across this mean position with the equation of the center. The object also appears to become smaller and larger as it moves farther away and nearer because of the eccentricity of the orbit. A marker (red) shows the position of the periapsis.

In two-body, Keplerian orbital mechanics, the equation of the center is the angular difference between the actual position of a body in its elliptical orbit and the position it would occupy if its motion were uniform, in a circular orbit of the same period. It is defined as the difference true anomaly, ν, minus mean anomaly, M, and is typically expressed a function of mean anomaly, M, and orbital eccentricity, e. [1]

Contents

Discussion

Since antiquity, the problem of predicting the motions of the heavenly bodies has been simplified by reducing it to one of a single body in orbit about another. In calculating the position of the body around its orbit, it is often convenient to begin by assuming circular motion. This first approximation is then simply a constant angular rate multiplied by an amount of time. There are various methods of proceeding to correct the approximate circular position to that produced by elliptical motion, many of them complex, and many involving solution of Kepler's equation. In contrast, the equation of the center is one of the easiest methods to apply.

In cases of small eccentricity, the position given by the equation of the center can be nearly as accurate as any other method of solving the problem. Many orbits of interest, such as those of bodies in the Solar System or of artificial Earth satellites, have these nearly-circular orbits. As eccentricity becomes greater, and orbits more elliptical, the equation's accuracy declines, failing completely at the highest values, hence it is not used for such orbits.

The equation in its modern form can be truncated at any arbitrary level of accuracy, and when limited to just the most important terms, it can produce an easily calculated approximation of the true position when full accuracy is not important. Such approximations can be used, for instance, as starting values for iterative solutions of Kepler's equation, [1] or in calculating rise or set times, which due to atmospheric effects cannot be predicted with much precision.

The ancient Greeks, in particular Hipparchus, knew the equation of the center as prosthaphaeresis , although their understanding of the geometry of the planets' motion was not the same. [2] The word equation (Latin, aequatio, -onis) in the present sense comes from astronomy. It was specified and used by Kepler, as that variable quantity determined by calculation which must be added or subtracted from the mean motion to obtain the true motion. In astronomy, the term equation of time has a similar meaning. [3] The equation of the center in modern form was developed as part of perturbation analysis, that is, the study of the effects of a third body on two-body motion. [4] [5]

Series expansion

Maximum error of the series expansion of the equation of the center, in radians, as a function of orbital eccentricity (bottom axis) and the power of e at which the series is truncated (right axis). Note that at low eccentricity (left-hand side of the graph), the series does not need to be carried to high order to produce accurate results. Eoc max err.png
Maximum error of the series expansion of the equation of the center, in radians, as a function of orbital eccentricity (bottom axis) and the power of e at which the series is truncated (right axis). Note that at low eccentricity (left-hand side of the graph), the series does not need to be carried to high order to produce accurate results.
Series-expanded equation of the center as a function of mean anomaly for various eccentricities, with the equation of the center truncated at e for all curves. Note that the truncated equation fails at high eccentricity and produces an oscillating curve. Eoc vs e.png
Series-expanded equation of the center as a function of mean anomaly for various eccentricities, with the equation of the center truncated at e for all curves. Note that the truncated equation fails at high eccentricity and produces an oscillating curve.

In Keplerian motion, the coordinates of the body retrace the same values with each orbit, which is the definition of a periodic function. Such functions can be expressed as periodic series of any continuously increasing angular variable, [6] and the variable of most interest is the mean anomaly, M. Because it increases uniformly with time, expressing any other variable as a series in mean anomaly is essentially the same as expressing it in terms of time. Because the eccentricity, e, of the orbit is small in value, the coefficients of the series can be developed in terms of powers of e. [5] Note that while these series can be presented in truncated form, they represent a sum of an infinite number of terms. [7]

The series for ν, the true anomaly can be expressed most conveniently in terms of M, e and Bessel functions of the first kind, [8]

where

are the Bessel functions and
[9]

The result is in radians.

The Bessel functions can be expanded in powers of x by, [10]

and βm by, [11]

Substituting and reducing, the equation for ν becomes (truncated at order e7), [8]

and by the definition, moving M to the left-hand side,

gives the equation of the center.

This equation is sometimes derived in an alternate way and presented in terms of powers of e with coefficients in functions of sin M (truncated at order e6),

which is identical to the above form. [12] [13]

For small e, the series converges rapidly. If e exceeds 0.6627..., it diverges for some values of M, first discovered by Pierre-Simon Laplace. [12] [14]

Examples

Orbital
eccentricity
[15]
Maximum equation of the center (series truncated as shown)
e7e3e2
Venus 0.0067770.7766°0.7766°0.7766°
Earth 0.016711.915°1.915°1.915°
Saturn 0.053866.174°6.174°6.186°
Mars 0.0933910.71°10.71°10.77°
Mercury 0.205623.68°23.77°23.28°

See also

Related Research Articles

<span class="mw-page-title-main">Kepler's laws of planetary motion</span> Laws describing the motion of planets

In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits and epicycles with elliptical trajectories, and explaining how planetary velocities vary. The three laws state that:

  1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
  2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
  3. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.
<span class="mw-page-title-main">Orbit</span> Curved path of an object around a point

In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.

Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in astronomy and orbital mechanics.

<span class="mw-page-title-main">Orbital mechanics</span> Field of classical mechanics concerned with the motion of spacecraft

Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control.

<span class="mw-page-title-main">Equation of time</span> Apparent solar time minus mean solar time

The equation of time describes the discrepancy between two kinds of solar time. The word equation is used in the medieval sense of "reconciliation of a difference". The two times that differ are the apparent solar time, which directly tracks the diurnal motion of the Sun, and mean solar time, which tracks a theoretical mean Sun with uniform motion along the celestial equator. Apparent solar time can be obtained by measurement of the current position of the Sun, as indicated by a sundial. Mean solar time, for the same place, would be the time indicated by a steady clock set so that over the year its differences from apparent solar time would have a mean of zero.

In classical mechanics, the Laplace–Runge–Lenz (LRL) vector is a vector used chiefly to describe the shape and orientation of the orbit of one astronomical body around another, such as a binary star or a planet revolving around a star. For two bodies interacting by Newtonian gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the LRL vector is conserved in all problems in which two bodies interact by a central force that varies as the inverse square of the distance between them; such problems are called Kepler problems.

<span class="mw-page-title-main">Mean anomaly</span> Specifies the orbit of an object in space

In celestial mechanics, the mean anomaly is the fraction of an elliptical orbit's period that has elapsed since the orbiting body passed periapsis, expressed as an angle which can be used in calculating the position of that body in the classical two-body problem. It is the angular distance from the pericenter which a fictitious body would have if it moved in a circular orbit, with constant speed, in the same orbital period as the actual body in its elliptical orbit.

In orbital mechanics, the eccentric anomaly is an angular parameter that defines the position of a body that is moving along an elliptic Kepler orbit. The eccentric anomaly is one of three angular parameters ("anomalies") that define a position along an orbit, the other two being the true anomaly and the mean anomaly.

<span class="mw-page-title-main">True anomaly</span> Parameter of Keplerian orbits

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between the direction of periapsis and the current position of the body, as seen from the main focus of the ellipse.

<span class="mw-page-title-main">Parabolic trajectory</span> Type of orbit

In astrodynamics or celestial mechanics a parabolic trajectory is a Kepler orbit with the eccentricity equal to 1 and is an unbound orbit that is exactly on the border between elliptical and hyperbolic. When moving away from the source it is called an escape orbit, otherwise a capture orbit. It is also sometimes referred to as a C3 = 0 orbit (see Characteristic energy).

<span class="mw-page-title-main">Hyperbolic trajectory</span> Concept in astrodynamics

In astrodynamics or celestial mechanics, a hyperbolic trajectory or hyperbolic orbit is the trajectory of any object around a central body with more than enough speed to escape the central object's gravitational pull. The name derives from the fact that according to Newtonian theory such an orbit has the shape of a hyperbola. In more technical terms this can be expressed by the condition that the orbital eccentricity is greater than one.

<span class="mw-page-title-main">Elliptic orbit</span> Kepler orbit with an eccentricity of less than one

In astrodynamics or celestial mechanics, an elliptic orbit or elliptical orbit is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, it is a Kepler orbit with the eccentricity greater than 0 and less than 1. In a wider sense, it is a Kepler orbit with negative energy. This includes the radial elliptic orbit, with eccentricity equal to 1.

In orbital mechanics, mean motion is the angular speed required for a body to complete one orbit, assuming constant speed in a circular orbit which completes in the same time as the variable speed, elliptical orbit of the actual body. The concept applies equally well to a small body revolving about a large, massive primary body or to two relatively same-sized bodies revolving about a common center of mass. While nominally a mean, and theoretically so in the case of two-body motion, in practice the mean motion is not typically an average over time for the orbits of real bodies, which only approximate the two-body assumption. It is rather the instantaneous value which satisfies the above conditions as calculated from the current gravitational and geometric circumstances of the body's constantly-changing, perturbed orbit.

In classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force F that varies in strength as the inverse square of the distance r between them. The force may be either attractive or repulsive. The problem is to find the position or speed of the two bodies over time given their masses, positions, and velocities. Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital elements.

In mathematics, the Laplace limit is the maximum value of the eccentricity for which a solution to Kepler's equation, in terms of a power series in the eccentricity, converges. It is approximately

<span class="mw-page-title-main">Kepler orbit</span> Celestial orbit whose trajectory is a conic section in the orbital plane

In celestial mechanics, a Kepler orbit is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways.

In orbital mechanics, the universal variable formulation is a method used to solve the two-body Kepler problem. It is a generalized form of Kepler's Equation, extending them to apply not only to elliptic orbits, but also parabolic and hyperbolic orbits. It thus is applicable to many situations in the Solar System, where orbits of widely varying eccentricities are present.

In celestial mechanics, Lambert's problem is concerned with the determination of an orbit from two position vectors and the time of flight, posed in the 18th century by Johann Heinrich Lambert and formally solved with mathematical proof by Joseph-Louis Lagrange. It has important applications in the areas of rendezvous, targeting, guidance, and preliminary orbit determination.

In astrodynamics and celestial mechanics a radial trajectory is a Kepler orbit with zero angular momentum. Two objects in a radial trajectory move directly towards or away from each other in a straight line.

<span class="mw-page-title-main">Kepler's equation</span> Orbital mechanics term

In orbital mechanics, Kepler's equation relates various geometric properties of the orbit of a body subject to a central force.

References

  1. 1 2 Vallado, David A. (2001). Fundamentals of Astrodynamics and Applications (second ed.). Microcosm Press, El Segundo, CA. p. 82. ISBN   1-881883-12-4.
  2. Narrien, John (1833). An Historical Account of the Origin and Progress of Astronomy. Baldwin and Cradock, London. pp.  230–231.
  3. Capderou, Michel (2005). Satellites Orbits and Missions . Springer-Verlag. p.  23. ISBN   978-2-287-21317-5.
  4. Moulton, Forest Ray (1914). An Introduction to Celestial Mechanics (second revised ed.). Macmillan Co., New York. p. 165. ISBN   9780598943972., at Google books
  5. 1 2 Smart, W. M. (1953). Celestial Mechanics. Longmans, Green and Co., London. p. 26.
  6. Brouwer, Dirk; Clemence, Gerald M. (1961). Methods of Celestial Mechanics . Academic Press, New York and London. p.  60.
  7. Vallado, David A. (2001). p. 80
  8. 1 2 Brouwer, Dirk; Clemence, Gerald M. (1961). p. 77.
  9. Brouwer, Dirk; Clemence, Gerald M. (1961). p. 62.
  10. Brouwer, Dirk; Clemence, Gerald M. (1961). p. 68.
  11. Smart, W. M. (1953). p. 32.
  12. 1 2 Moulton, Forest Ray (1914). pp. 171–172.
  13. Danby, J.M.A. (1988). Fundamentals of Celestial Mechanics. Willmann-Bell, Inc., Richmond, VA. pp. 199–200. ISBN   0-943396-20-4.
  14. Plummer, H. C. (1918). An Introductory Treatise on Dynamical Astronomy. Cambridge University Press. pp.  46–47.
  15. Seidelmann, P. Kenneth; Urban, Sean E., eds. (2013). Explanatory Supplement to the Astronomical Almanac (3rd ed.). University Science Books, Mill Valley, CA. p. 338. ISBN   978-1-891389-85-6.

Further reading