Ethanol metabolism

Last updated

Ethanol, an alcohol found in nature and in alcoholic drinks, is metabolized through a complex catabolic metabolic pathway. In humans, several enzymes are involved in processing ethanol first into acetaldehyde and further into acetic acid and acetyl-CoA. Once acetyl-CoA is formed, it becomes a substrate for the citric acid cycle ultimately producing cellular energy and releasing water and carbon dioxide. Due to differences in enzyme presence and availability, human adults and fetuses process ethanol through different pathways. Gene variation in these enzymes can lead to variation in catalytic efficiency between individuals. The liver is the major organ that metabolizes ethanol due to its high concentration of these enzymes.

Contents

Human metabolic physiology

Ethanol and evolution

The average human digestive system produces approximately 3 g of ethanol per day through fermentation of its contents. [1] Catabolic degradation of ethanol is thus essential to life, not only of humans, but of all known organisms. Certain amino acid sequences in the enzymes used to oxidize ethanol are conserved (unchanged) going back to the last common ancestor over 3.5 bya. [2] Such a function is necessary because all organisms produce alcohol in small amounts by several pathways, primarily through fatty acid synthesis, [3] glycerolipid metabolism, [4] and bile acid biosynthesis pathways. [5] If the body had no mechanism for catabolizing the alcohols, they would build up in the body and become toxic. This could be an evolutionary rationale for alcohol catabolism also by sulfotransferase.

Physiologic structures

A basic organizing theme in biological systems is that increasing complexity in specialized tissues and organs allows for greater specificity of function. This occurs for the processing of ethanol in the human body. The enzymes required for the oxidation reactions are confined to certain tissues. In particular, much higher concentrations of such enzymes are found in the liver, [6] which is the primary site for alcohol catabolism. Variations in genes influence alcohol metabolism and drinking behavior. [7]

Thermodynamic considerations

Energy thermodynamics

Energy calculations

The reaction from ethanol to carbon dioxide and water is a complex one that proceeds in at least 11 steps in humans. Below, the Gibbs free energy of formation for each step is shown with ΔGf values given in [8]

Complete reaction:
C2H6O(ethanol) → C2H4O(acetaldehyde) → C2H4O2(acetic acid) → acetyl-CoA → 3H2O + 2CO2.
ΔGf = Σ ΔGfp − ΔGfo

Step one

C2H6O(ethanol) + NAD + → C2H4O(acetaldehyde) + NADH + H+
Ethanol: −174.8 kJ/mol
Acetaldehyde: −127.6 kJ/mol
ΔGf1 = −127.6 kJ/mol + 174.8 kJ/mol = 47.2 kJ/mol (endergonic)
ΣΔGf = 47.2 kJ/mol (endergonic, but this does not take into consideration the simultaneous reduction of NAD+.)

Step two

C2H4O(acetaldehyde) + NAD + + H2O → C2H4O2(acetic acid) + NADH + H+
Acetaldehyde: −127.6 kJ/mol
Acetic acid: −389.9 kJ/mol
ΔGf2 = −389.9 kJ/mol + 127.6 kJ/mol = −262.3 kJ/mol (exergonic)
ΣΔGf = −262.3 kJ/mol + 47.2 kJ/mol = −215.1 kJ/mol (exergonic, but again this does not take into consideration the reduction of NAD +.)

Step three

C2H4O2(acetic acid) + CoA + ATP → Acetyl-CoA + AMP + PPi

ΔGf3 = −46.8 kJ/mol [9]

Steps 4 through 11

After this the acetyl-CoA enters the TCA cycle and is converted to 2 CO2 molecules in 8 reactions.

Because the Gibbs energy is a state function, we can ignore all of these, and indeed can ignore even the above 3 reactions. Overall, the free energy is simply calculated from the free energy of formation of the product and reactants.

For the oxidation of acetic acid we have:
Acetic acid: −389.9 kJ/mol
3H2O + 2CO2: −1500.1 kJ/mol
ΔGf4 = −1500 kJ/mol + 389.6 kJ/mol = −1110.5 kJ/mol (exergonic)
ΣΔGf = −1110.5 kJ/mol215.1 kJ/mol = −1325.6 kJ/mol (exergonic)

Discussion of calculations

If catabolism of alcohol goes all the way to completion, then we have a very exothermic event yielding some 1325 kJ/mol of energy. If the reaction stops part way through the metabolic pathways, which happens because acetic acid is excreted in the urine after drinking, then not nearly as much energy can be derived from alcohol, indeed, only 215.1 kJ/mol. At the very least, the theoretical limits on energy yield are determined to be −215.1 kJ/mol to −1325.6 kJ/mol. It is also important to note that step 1 on this reaction is endothermic, requiring 47.2 kJ/mol of alcohol, or about 3 molecules of adenosine triphosphate (ATP) per molecule of ethanol.

Organic reaction scheme

Steps of the reaction

The first three steps of the reaction pathways lead from ethanol to acetaldehyde to acetic acid to acetyl-CoA. Once acetyl-CoA is formed, it is free to enter directly into the citric acid cycle. However, under alcoholic conditions, the citric acid cycle has been stalled by the oversupply of NADH derived from ethanol oxidation. The resulting backup of acetate shifts the reaction equilibrium for acetaldehyde dehydrogenase back towards acetaldehyde. Acetaldehyde subsequently accumulates and begins to form covalent bonds with cellular macromolecules, forming toxic adducts that, eventually, lead to death of the cell. This same excess of NADH from ethanol oxidation causes the liver to move away from fatty acid oxidation, which produces NADH, towards fatty acid synthesis, which consumes NADH. This consequent lipogenesis is believed to account largely for the pathogenesis of alcoholic fatty liver disease.

Gene expression and ethanol metabolism

Ethanol to acetaldehyde in human adults

In human adults, ethanol is oxidized to acetaldehyde using NAD+, mainly via the hepatic enzyme alcohol dehydrogenase IB (class I), beta polypeptide (ADH1B, EC 1.1.1.1). The gene coding for this enzyme is located on chromosome 4, locus. [10] The enzyme encoded by this gene is a member of the alcohol dehydrogenase family. Members of this enzyme family metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. This encoded protein, consisting of several homo- and heterodimers of alpha, beta, and gamma subunits, exhibits high activity for ethanol oxidation and plays a major role in ethanol catabolism. Three genes encoding alpha, beta and gamma subunits are tandemly organized in a genomic segment as a gene cluster. [11] CYP2E1, another enzyme involved in ethanol oxidation, is upregulated by ethanol exposure, meaning that ethanol is capable of inducing its own metabolism. Ethanol has indeed been observed to be cleared more quickly by regular drinkers than non-drinkers.[ citation needed ]

Ethanol to acetaldehyde in human fetuses

In human embryos and fetuses, ethanol is not metabolized via this mechanism as ADH enzymes are not yet expressed to any significant quantity in human fetal liver (the induction of ADH only starts after birth, and requires years to reach adult levels). [12] Accordingly, the fetal liver cannot metabolize ethanol or other low molecular weight xenobiotics. In fetuses, ethanol is instead metabolized at much slower rates by different enzymes from the cytochrome P-450 superfamily (CYP), in particular by CYP2E1. The low fetal rate of ethanol clearance is responsible for the important observation that the fetal compartment retains high levels of ethanol long after ethanol has been cleared from the maternal circulation by the adult ADH activity in the maternal liver. [13] CYP2E1 expression and activity have been detected in various human fetal tissues after the onset of organogenesis (ca 50 days of gestation). [14] Exposure to ethanol is known to promote further induction of this enzyme in fetal and adult tissues. CYP2E1 is a major contributor to the so-called Microsomal Ethanol Oxidizing System (MEOS) [15] and its activity in fetal tissues is thought to contribute significantly to the toxicity of maternal ethanol consumption. [12] [16] In presence of ethanol and oxygen, CYP2E1 is known[ by whom? ] to release superoxide radicals and induce the oxidation of polyunsaturated fatty acids to toxic aldehyde products like 4-hydroxynonenal (HNE).[ citation needed ]

Acetaldehyde to acetic acid

At this point in the metabolic process, the ACS alcohol point system is utilized. It standardizes ethanol concentration regardless of volume, based on fermentation and reaction coordinates, cascading through the β-1,6 linkage. Acetaldehyde is a highly unstable compound and quickly forms free radical structures which are highly toxic if not quenched by antioxidants such as ascorbic acid (vitamin C) or thiamine (vitamin B1). These free radicals can result in damage to embryonic neural crest cells and can lead to severe birth defects. Prolonged exposure of the kidney and liver to these compounds in chronic alcoholics can lead to severe damage. [17] The literature also suggests that these toxins may have a hand in causing some of the ill effects associated with hang-overs.

The enzyme associated with the chemical transformation from acetaldehyde to acetic acid is aldehyde dehydrogenase 2 family (ALDH2, EC 1.2.1.3). In humans, the gene coding for this enzyme is found on chromosome 12, locus q24.2. [18] There is variation in this gene leading to observable differences in catalytic efficiency between people. [19]

Acetic acid to acetyl-CoA

Two enzymes are associated with the conversion of acetic acid to acetyl-CoA. The first is acyl-CoA synthetase short-chain family member 2 ACSS2 (EC 6.2.1.1). [20] The second enzyme is acetyl-CoA synthase 2 (confusingly also called ACSS1) which is localized in mitochondria.

Acetyl-CoA to water and carbon dioxide

Once acetyl-CoA is formed, it enters the normal citric acid cycle.

See also

Related Research Articles

<span class="mw-page-title-main">Citric acid cycle</span> Interconnected biochemical reactions releasing energy

The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle or the TCA cycle (tricarboxylic acid cycle)—is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins. The chemical energy released is available under the form of ATP. The Krebs cycle is used by organisms that respire (as opposed to organisms that ferment) to generate energy, either by anaerobic respiration or aerobic respiration. In addition, the cycle provides precursors of certain amino acids, as well as the reducing agent NADH, that are used in numerous other reactions. Its central importance to many biochemical pathways suggests that it was one of the earliest components of metabolism. Even though it is branded as a "cycle", it is not necessary for metabolites to follow only one specific route; at least three alternative segments of the citric acid cycle have been recognized.

<span class="mw-page-title-main">Glycolysis</span> Series of interconnected biochemical reactions

Glycolysis is the metabolic pathway that converts glucose into pyruvate and, in most organisms, occurs in the liquid part of cells. The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). Glycolysis is a sequence of ten reactions catalyzed by enzymes.

A dehydrogenase is an enzyme belonging to the group of oxidoreductases that oxidizes a substrate by reducing an electron acceptor, usually NAD+/NADP+ or a flavin coenzyme such as FAD or FMN. Like all catalysts, they catalyze reverse as well as forward reactions, and in some cases this has physiological significance: for example, alcohol dehydrogenase catalyzes the oxidation of ethanol to acetaldehyde in animals, but in yeast it catalyzes the production of ethanol from acetaldehyde.

Pyruvic acid (IUPAC name: 2-oxopropanoic acid, also called acetoic acid) (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO, is an intermediate in several metabolic pathways throughout the cell.

Acetaldehyde (IUPAC systematic name ethanal) is an organic chemical compound with the formula CH3 CHO, sometimes abbreviated as MeCHO. It is a colorless liquid or gas, boiling near room temperature. It is one of the most important aldehydes, occurring widely in nature and being produced on a large scale in industry. Acetaldehyde occurs naturally in coffee, bread, and ripe fruit, and is produced by plants. It is also produced by the partial oxidation of ethanol by the liver enzyme alcohol dehydrogenase and is a contributing cause of hangover after alcohol consumption. Pathways of exposure include air, water, land, or groundwater, as well as drink and smoke. Consumption of disulfiram inhibits acetaldehyde dehydrogenase, the enzyme responsible for the metabolism of acetaldehyde, thereby causing it to build up in the body.

<span class="mw-page-title-main">Alcohol dehydrogenase</span> Group of dehydrogenase enzymes

Alcohol dehydrogenases (ADH) (EC 1.1.1.1) are a group of dehydrogenase enzymes that occur in many organisms and facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of nicotinamide adenine dinucleotide (NAD+) to NADH. In humans and many other animals, they serve to break down alcohols that are otherwise toxic, and they also participate in the generation of useful aldehyde, ketone, or alcohol groups during the biosynthesis of various metabolites. In yeast, plants, and many bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation to ensure a constant supply of NAD+.

<span class="mw-page-title-main">Acetyl-CoA</span> Chemical compound

Acetyl-CoA is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle to be oxidized for energy production.

Digestion is the breakdown of carbohydrates to yield an energy-rich compound called ATP. The production of ATP is achieved through the oxidation of glucose molecules. In oxidation, the electrons are stripped from a glucose molecule to reduce NAD+ and FAD. NAD+ and FAD possess a high energy potential to drive the production of ATP in the electron transport chain. ATP production occurs in the mitochondria of the cell. There are two methods of producing ATP: aerobic and anaerobic. In aerobic respiration, oxygen is required. Using oxygen increases ATP production from 4 ATP molecules to about 30 ATP molecules. In anaerobic respiration, oxygen is not required. When oxygen is absent, the generation of ATP continues through fermentation. There are two types of fermentation: alcohol fermentation and lactic acid fermentation.

<span class="mw-page-title-main">Ketogenesis</span> Chemical synthesis of ketone bodies

Ketogenesis is the biochemical process through which organisms produce ketone bodies by breaking down fatty acids and ketogenic amino acids. The process supplies energy to certain organs, particularly the brain, heart and skeletal muscle, under specific scenarios including fasting, caloric restriction, sleep, or others.

<span class="mw-page-title-main">Acetaldehyde dehydrogenase</span> Class of enzymes

Acetaldehyde dehydrogenases are dehydrogenase enzymes which catalyze the conversion of acetaldehyde into acetyl-CoA. This can be summarized as follows:

<span class="mw-page-title-main">CYP2E1</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2E1 is a member of the cytochrome P450 mixed-function oxidase system, which is involved in the metabolism of xenobiotics in the body. This class of enzymes is divided up into a number of subcategories, including CYP1, CYP2, and CYP3, which as a group are largely responsible for the breakdown of foreign compounds in mammals.

Fatty acid metabolism consists of various metabolic processes involving or closely related to fatty acids, a family of molecules classified within the lipid macronutrient category. These processes can mainly be divided into (1) catabolic processes that generate energy and (2) anabolic processes where they serve as building blocks for other compounds.

In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA. Acetyl-CoA enters the citric acid cycle, generating NADH and FADH2, which are electron carriers used in the electron transport chain. It is named as such because the beta carbon of the fatty acid chain undergoes oxidation and is converted to a carbonyl group to start the cycle all over again. Beta-oxidation is primarily facilitated by the mitochondrial trifunctional protein, an enzyme complex associated with the inner mitochondrial membrane, although very long chain fatty acids are oxidized in peroxisomes.

<span class="mw-page-title-main">Mitochondrial trifunctional protein deficiency</span> Medical condition

Mitochondrial trifunctional protein deficiency is an autosomal recessive fatty acid oxidation disorder that prevents the body from converting certain fats to energy, particularly during periods without food. People with this disorder have inadequate levels of an enzyme that breaks down a certain group of fats called long-chain fatty acids.

<span class="mw-page-title-main">Aldehyde dehydrogenase</span> Group of enzymes

Aldehyde dehydrogenases are a group of enzymes that catalyse the oxidation of aldehydes. They convert aldehydes to carboxylic acids. The oxygen comes from a water molecule. To date, nineteen ALDH genes have been identified within the human genome. These genes participate in a wide variety of biological processes including the detoxification of exogenously and endogenously generated aldehydes.

<span class="mw-page-title-main">Acyl-CoA</span> Group of coenzymes that metabolize fatty acids

Acyl-CoA is a group of coenzymes that metabolize fatty acids. Acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP, the universal biochemical energy carrier.

<span class="mw-page-title-main">ALDH2</span> Enzyme

Aldehyde dehydrogenase, mitochondrial is an enzyme that in humans is encoded by the ALDH2 gene located on chromosome 12. ALDH2 belongs to the aldehyde dehydrogenase family of enzymes. Aldehyde dehydrogenase is the second enzyme of the major oxidative pathway of alcohol metabolism. ALDH2 has a low Km for acetaldehyde, and is localized in mitochondrial matrix. The other liver isozyme, ALDH1, localizes to the cytosol.

<span class="mw-page-title-main">Butyryl-CoA</span> Chemical compound

Butyryl-CoA is an organic coenzyme A-containing derivative of butyric acid. It is a natural product found in many biological pathways, such as fatty acid metabolism, fermentation, and 4-aminobutanoate (GABA) degradation. It mostly participates as an intermediate, a precursor to and converted from crotonyl-CoA. This interconversion is mediated by butyryl-CoA dehydrogenase.

Pseudohypoxia refers to a condition that mimics hypoxia, by having sufficient oxygen yet impaired mitochondrial respiration due to a deficiency of necessary co-enzymes, such as NAD+ and TPP. The increased cytosolic ratio of free NADH/NAD+ in cells (more NADH than NAD+) can be caused by diabetic hyperglycemia and by excessive alcohol consumption. Low levels of TPP results from thiamine deficiency.

<span class="mw-page-title-main">Citrate–malate shuttle</span> Series of chemical reactions

The citrate-malate shuttle is a series of chemical reactions, commonly referred to as a biochemical cycle or system, that transports acetyl-CoA in the mitochondrial matrix across the inner and outer mitochondrial membranes for fatty acid synthesis. Mitochondria are enclosed in a double membrane. As the inner mitochondrial membrane is impermeable to acetyl-CoA, the shuttle system is essential to fatty acid synthesis in the cytosol. It plays an important role in the generation of lipids in the liver.

References

  1. ETHANOL, ACETALDEHYDE AND GASTROINTESTINAL FLORA Jyrki Tillonen ISBN   952-91-2603-4 PDF
  2. group, NIH/NLM/NCBI/IEB/CDD. "NCBI CDD Conserved Protein Domain ADH_zinc_N". www.ncbi.nlm.nih.gov. Retrieved 2018-04-28.
  3. "Fatty Acid Synthesis".
  4. "Glycerolipid Metabolism".
  5. "Bile Acid Biosynthesis".
  6. Tanaka, Furnika; Shiratori, Yasushi; Yokosuka, Osarnu; Imazeki, Furnio; Tsukada, Yoshio; Omata, Masao (June 1997). "Polymorphism of Alcohol-Metabolizing Genes Affects Drinking Behavior and Alcoholic Liver Disease in Japanese Men". Alcoholism: Clinical and Experimental Research. 21 (4): 596–601. doi:10.1111/j.1530-0277.1997.tb03808.x. PMID   9194910.
  7. Agarwal, D.P (Nov 2001). "Genetic polymorphisms of alcohol metabolizing enzymes". Pathol Biol (Paris). 49 (9): 703–9. doi:10.1016/s0369-8114(01)00242-5. PMID   11762132.
  8. CRC Handbook of Chemistry and Physics, 81st Edition, 2000
  9. "MetaCyc EC 6.2.1.1".
  10. https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NC_000004.10&from=100446552&to=100461581&strand=2&dopt=gb 4q21-q23
  11. "ADH1B alcohol dehydrogenase 1B (class I), beta polypeptide [Homo sapiens (human)] – Gene – NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-04-28.
  12. 1 2 Ernst van Faassen and Onni Niemelä, Biochemistry of prenatal alcohol exposure, NOVA Science Publishers, New York 2011.[ page needed ]
  13. Nava-Ocampo, Alejandro A.; Velázquez-Armenta, Yadira; Brien, James F.; Koren, Gideon (June 2004). "Elimination kinetics of ethanol in pregnant women". Reproductive Toxicology. 18 (4): 613–617. doi:10.1016/j.reprotox.2004.02.012. PMID   15135856.
  14. Brzezinski, Monica R.; Boutelet-Bochan, Helene; Person, Richard E.; Fantel, Alan G.; Juchau, Mont R. (1 June 1999). "Catalytic Activity and Quantitation of Cytochrome P-450 2E1 in Prenatal Human Brain". Journal of Pharmacology and Experimental Therapeutics. 289 (3): 1648–1653. PMID   10336564.
  15. Lieber, Charles S. (25 October 2004). "The Discovery of the Microsomal Ethanol Oxidizing System and Its Physiologic and Pathologic Role". Drug Metabolism Reviews. 36 (3–4): 511–529. doi:10.1081/dmr-200033441. PMID   15554233. S2CID   27992318.
  16. Pregnancy and Alcohol Consumption, ed. J.D. Hoffmann, NOVA Science Publishers, New York 2011.[ page needed ]
  17. "Acetaldehyde" (PDF). Archived (PDF) from the original on 2010-06-05. Retrieved 2010-04-11.
  18. "Homo sapiens chromosome 12, reference assembly, complete sequence – Nucleotide – NCBI". www.ncbi.nlm.nih.gov. 3 March 2008. Retrieved 2018-04-28.
  19. "ALDH2 aldehyde dehydrogenase 2 family member [Homo sapiens (human)] – Gene – NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-04-28.
  20. "ACSS2 acyl-CoA synthetase short chain family member 2 [Homo sapiens (human)] – Gene – NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-04-28.

Further reading