Excavated dodecahedron

Last updated
Excavated dodecahedron
Excavated dodecahedron.png
Type Stellation
Index W 28, 26/59
Elements
(As a star polyhedron)
F = 20, E = 60
V = 20 (χ = 20)
Faces Star hexagon face.png
Star hexagon
Vertex figure Medial triambic icosahedron face.svg
Concave hexagon
Stellation diagram Excavated dodecahedron stellation facets.svg
Symmetry group icosahedral (Ih)
Dual polyhedron self
Properties noble polyhedron, vertex transitive, self-dual polyhedron

In geometry, the excavated dodecahedron is a star polyhedron that looks like a dodecahedron with concave pentagonal pyramids in place of its faces. Its exterior surface represents the Ef1g1 stellation of the icosahedron. It appears in Magnus Wenninger's book Polyhedron Models as model 28, the third stellation of icosahedron.

Contents

Description

All 20 vertices and 30 of its 60 edges belong to its dodecahedral hull. The 30 other internal edges are longer and belong to a great stellated dodecahedron. (Each contains one of the 30 edges of the icosahedral core.) There are 20 faces corresponding to the 20 vertices. Each face is a self-intersecting hexagon with alternating long and short edges and 60° angles. The equilateral triangles touching a short edge are part of the face. (The smaller one between the long edges is a face of the icosahedral core.)











A 3D model of an excavated dodecahedron. Excavated Dodecahedron.stl
A 3D model of an excavated dodecahedron.
CoreLong edgesFacesHullCut
Stell12g cells solid 5.png
Icosahedron
Stell12g cells solid 4 stacked.png
G. s. dodecahedron
Stell12g cells solid 3 stacked.png Stell12g cells solid 2 stacked.png
Dodecahedron
Stell12g cells cut 3b solid.png
one hexagonal face in blue

Faceting of the dodecahedron

It has the same external form as a certain facetting of the dodecahedron having 20 self-intersecting hexagons as faces. The non-convex hexagon face can be broken up into four equilateral triangles, three of which are the same size. A true excavated dodecahedron has the three congruent equilateral triangles as true faces of the polyhedron, while the interior equilateral triangle is not present.

The 20 vertices of the convex hull match the vertex arrangement of the dodecahedron.

The faceting is a noble polyhedron. With six six-sided faces around each vertex, it is topologically equivalent to a quotient space of the hyperbolic order-6 hexagonal tiling, {6,6} and is an abstract type {6,6}6. It is one of ten abstract regular polyhedra of index two with vertices on one orbit. [1] [2]

Uniform tiling 66-t2.png

Polyhedron truncated 20 dual big.png
Concave pentakis dodecahedron.png
A pentakis dodecahedron (left) with inverted pyramids (right) has the same surface.
Pyritohedral excavated dodecahedron.png
Pyritohedral great icosahedron core.png
Polyhedron great 20 pyritohedral.png
Pyritohedral excavated dodecahedron, face gray.png
Pyritohedral great icosahedron core, face gray.png
Polyhedron great 20 pyritohedral, face gray.png
The faces of the e. d. (left) are part of the faces of the great icosahedron (right). Extending the short edges of a hexagon until they meet gives the triangle that contains it. Replacing each self-intersecting hexagon with a convex one gives a figure containing the edges of the compound of five cubes (middle). But this is not really a polyhedron, because each of these edges belongs to only one face.
Stell12s cells solid 3 stacked.png
Stell12g cells solid 3 stacked.png
The great dodecahedron (left) is an excavated icosahedron. It also has 60 visible triangles. But unlike the e. d. (right) it has convex faces and thus no inner edges.

Related Research Articles

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Regular icosahedron</span> Polyhedron with 20 regular triangular faces

In geometry, a regular icosahedron is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces.

<span class="mw-page-title-main">Kepler–Poinsot polyhedron</span> Any of 4 regular star polyhedra

In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra.

In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

<span class="mw-page-title-main">Stellation</span> Extending the elements of a polytope to form a new figure

In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from Latin stella, "star". Stellation is the reciprocal or dual process to faceting.

A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.

<span class="mw-page-title-main">Triakis icosahedron</span> Catalan solid with 60 faces

In geometry, the triakis icosahedron is an Archimedean dual solid, or a Catalan solid, with 60 isosceles triangle faces. Its dual is the truncated dodecahedron. It has also been called the kisicosahedron. It was first depicted, in a non-convex form with equilateral triangle faces, by Leonardo da Vinci in Luca Pacioli's Divina proportione, where it was named the icosahedron elevatum. The capsid of the Hepatitis A virus has the shape of a triakis icosahedron.

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent.

<span class="mw-page-title-main">Final stellation of the icosahedron</span> Outermost stellation of the icosahedron

In geometry, the complete or final stellation of the icosahedron is the outermost stellation of the icosahedron, and is "complete" and "final" because it includes all of the cells in the icosahedron's stellation diagram. That is, every three intersecting face planes of the icosahedral core intersect either on a vertex of this polyhedron, or inside of it.

<span class="mw-page-title-main">Small stellated dodecahedron</span> A Kepler-Poinsot polyhedron

In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {52,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

<span class="mw-page-title-main">Great stellated dodecahedron</span> Kepler–Poinsot polyhedron

In geometry, the great stellated dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol {52,3}. It is one of four nonconvex regular polyhedra.

<span class="mw-page-title-main">Great icosahedron</span> Kepler-Poinsot polyhedron with 20 faces

In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra, with Schläfli symbol {3,52} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.

<span class="mw-page-title-main">Great icosidodecahedron</span> Polyhedron with 32 faces

In geometry, the great icosidodecahedron is a nonconvex uniform polyhedron, indexed as U54. It has 32 faces (20 triangles and 12 pentagrams), 60 edges, and 30 vertices. It is given a Schläfli symbol r{3,52}. It is the rectification of the great stellated dodecahedron and the great icosahedron. It was discovered independently by Hess (1878), Badoureau (1881) and Pitsch (1882).

<span class="mw-page-title-main">Chamfered dodecahedron</span> Goldberg polyhedron with 42 faces

In geometry, the chamfered dodecahedron is a convex polyhedron with 80 vertices, 120 edges, and 42 faces: 30 hexagons and 12 pentagons. It is constructed as a chamfer (edge-truncation) of a regular dodecahedron. The pentagons are reduced in size and new hexagonal faces are added in place of all the original edges. Its dual is the pentakis icosidodecahedron.

In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality.

<span class="mw-page-title-main">Compound of ten tetrahedra</span> Polyhedral compound

The compound of ten tetrahedra is one of the five regular polyhedral compounds. This polyhedron can be seen as either a stellation of the icosahedron or a compound. This compound was first described by Edmund Hess in 1876.

<span class="mw-page-title-main">Faceting</span>

In geometry, faceting is the process of removing parts of a polygon, polyhedron or polytope, without creating any new vertices.

<span class="mw-page-title-main">First stellation of the rhombic dodecahedron</span>

In geometry, the first stellation of the rhombic dodecahedron is a self-intersecting polyhedron with 12 faces, each of which is a non-convex hexagon. It is a stellation of the rhombic dodecahedron and has the same outer shell and the same visual appearance as two other shapes: a solid, Escher's solid, with 48 triangular faces, and a polyhedral compound of three flattened octahedra with 24 overlapping triangular faces.

<span class="mw-page-title-main">Tetrahedrally diminished dodecahedron</span> Family of derived polyhedra

In geometry, a tetrahedrally diminished dodecahedron is a topologically self-dual polyhedron made of 16 vertices, 30 edges, and 16 faces.

<span class="mw-page-title-main">Icosahedron</span> Polyhedron with 20 faces

In geometry, an icosahedron is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty', and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" or "icosahedrons".

References

  1. Regular Polyhedra of Index Two, I Anthony M. Cutler, Egon Schulte, 2010
  2. Regular Polyhedra of Index Two, II  Beitrage zur Algebra und Geometrie 52(2):357-387 · November 2010, Table 3, p.27
Notable stellations of the icosahedron
Regular Uniform duals Regular compounds Regular star Others
(Convex) icosahedron Small triambic icosahedron Medial triambic icosahedron Great triambic icosahedron Compound of five octahedra Compound of five tetrahedra Compound of ten tetrahedra Great icosahedron Excavated dodecahedron Final stellation
Zeroth stellation of icosahedron.png First stellation of icosahedron.png Ninth stellation of icosahedron.png First compound stellation of icosahedron.png Second compound stellation of icosahedron.png Third compound stellation of icosahedron.png Sixteenth stellation of icosahedron.png Third stellation of icosahedron.svg Seventeenth stellation of icosahedron.png
Stellation diagram of icosahedron.svg Small triambic icosahedron stellation facets.svg Great triambic icosahedron stellation facets.svg Compound of five octahedra stellation facets.svg Compound of five tetrahedra stellation facets.svg Compound of ten tetrahedra stellation facets.svg Great icosahedron stellation facets.svg Excavated dodecahedron stellation facets.svg Echidnahedron stellation facets.svg
The stellation process on the icosahedron creates a number of related polyhedra and compounds with icosahedral symmetry.