Exemplar theory

Last updated

Exemplar theory is a proposal concerning the way humans categorize objects and ideas in psychology. It argues that individuals make category judgments by comparing new stimuli with instances already stored in memory. The instance stored in memory is the "exemplar". The new stimulus is assigned to a category based on the greatest number of similarities it holds with exemplars in that category. For example, the model proposes that people create the "bird" category by maintaining in their memory a collection of all the birds they have experienced: sparrows, robins, ostriches, penguins, etc. If a new stimulus is similar enough to some of these stored bird examples, the person categorizes the stimulus in the "bird" category. [1] Various versions of the exemplar theory have led to a simplification of thought concerning concept learning, because they suggest that people use already-encountered memories to determine categorization, rather than creating an additional abstract summary of representations. [2]

Contents

Exemplar and prototype theory

Exemplar Theory is often contrasted with prototype theory, which proposes another method of categorization. Recently the adoption of both prototypes and exemplars based representations and categorization has been implemented in a cognitively inspired artificial system called DUAL PECCS (Dual Prototypes and Exemplars based Conceptual Categorization System) that, due to this integration, has extended the categorization capabilities of classical categorization models. [3] The two theories are similar in that they emphasize the importance of similarity in categorization: only by resembling a prototype or exemplar can a new stimulus be placed into a category. They also both rely on the same general cognitive process: we experience a new stimulus, a concept in memory is triggered, we make a judgment of resemblance, and draw a categorization conclusion. However, the specifics of the two theories are different. Prototype theory suggests that a new stimulus is compared to a single prototype in a category, while exemplar theory suggests that a new stimulus is compared to multiple known exemplars in a category. While a prototype is an abstract average of the members of a category, an exemplar is an actual member of a category, pulled from memory. While prototypes are economical—meaning they are more conducive to quick judgments—exemplars are less so. On the other hand, prototypes are less flexible than exemplars: exemplars can account more easily for atypical category members, such as a penguin being part of the "bird" category, because an exemplar does not average out the characteristics of a category like a prototype does. Exemplars can make sense of variable categories—those with less distinguished characteristics—such as "games", much more so than prototypes, which rely on typical characteristics to determine membership. Another difference, suggested by research, is that exemplars are more likely to be used than prototypes after long experience with a concept.

The categorization process for identifying which type of animal a dog is can be used to provide an example for the usage of exemplar theory. All of the traits of the dog would be taken into consideration and compared, separately, to other animals the individual has encountered before. The individual would eventually conclude that the animal is a dog as it has all of the traits previously associated with an example of a dog. The individual could come to this conclusion using the prototype theory if the dog were average looking, but what happens if the dog only has three legs and does not bark? Here prototype theory might not allow the individual to conclude that the animal is a dog because it doesn't have prototypic traits but exemplar theory would take into account previous examples of dogs that do not bark or dogs that have injuries and are therefore missing limbs. Exemplar-based categorization approaches carefully go through all encountered examples in a given category to allow for accurate categorization.

Contradictory statements have been made about the accuracy of the exemplar theory for categorization when it is compared to prototype theory. For example, one study at Arizona State University concluded that the exemplar theory is most accurate with minimal category experience and as experience is developed the prototype theory is more accurate. [4] Another study though, shows evidence that the exemplar-based approach is more accurate as you become more familiar with a category because knowledge of the members is greater than that that can be represented by a single prototype. It is clear that there are some situations where the exemplar-based approach is most accurate and others where it may not be the most accurate. [5] This being said, it is evident that the brain naturally uses a combination of categorization approaches in everyday life.

A study done at the University of Oregon found that prototypical averages are more likely to be forgotten than many specific examples. [6] Relying only on prototypes does not allow for adequate consideration while relying only on examples can be inefficient. Exemplar theory is more flexible than prototype theory but less economical, a combination of the two balances the flexibility with the efficiency. Experience with various examples averages into an ever-changing, more accurate prototype – it is not that exemplar theory and prototype theory compete against each other but that they work together, in tandem. [7] [8]

Typicality and exemplars

Typicality is an idea often associated with exemplar theory, where the best fitting exemplars, or those sharing the most characteristics with other exemplars of the category, are considered typical and lead to quicker categorization of new stimuli that are similar to these typical exemplars. [9] Typical exemplars are more likely to generate an accurate match when categorizing a new item. [9] For example, when one is asked to generate a list of fruits, apples, oranges and bananas will often come to mind first as they are considered more typical. Fruits such as starfruit or figs might appear on the list but would require a more extensive search through memory. [10]

Exemplar frequency and recency

It has been suggested by researchers that increased frequency of the presentation of a stimulus will positively influence the typicality of an exemplar. As exemplar theory relies on memory of specific instances or experiences, there will be more instances of that exemplar to call upon from memory when a new potential category member is encountered. [10] Continuing with the example of fruit, apples and oranges are encountered at a higher frequency, contributing to their typicality. Stimuli encountered soon after an exemplar is encountered can increase the rate of category recognition, this is known as recency. Priming of the exemplar makes the memory more easily accessible and come to mind quicker—therefore seeming more typical. [10]

Research

One study comparing rule-based theories and exemplar-based theories found that individuals use rules when the new items are confusable and use exemplars when they are distinct. Initially, categorization is based on rules. During the learning process, appropriate features for discriminating items is learned over time. Then, new items can be stored as exemplars and used to categorize less important items without discrepancies between rules. [11]

For example, a radiologist must classify a suspicious spot on an X-ray either as a tumor or as natural tissue variation. Exemplar-based theories suggest that the decision is reached by comparing the current X-ray to exemplars of X-rays in memory. If the X-ray appears more visually similar to X-rays of tumors than to those of normal tissue, the radiologist may classify the suspicious spot as a tumor. Rule-based theories suggest that the radiologist observe whether the specific properties of the X-ray meet the same criteria as tumors (i.e. the definition of tumor). The decision of whether or not the suspicious spot is a tumor is based on the criteria alone.

The frequency with which the item has been encountered is an important factor in influencing its typicality. Research suggests that the typicality of airplane as a vehicle was assessed before September 11, 2001 and then various times after that date. [12] The publicity from the incidents of 9/11 caused an increase in the rated typicality of airplane from five hours to one month after the terrorist attack. Approximately four and a half months after 9/11, the typicality of airplane returned to its normal level. These findings suggest that because of the amount of media coverage surrounding the events of 9/11, the word airplane was so frequently used that it became as common as a typical vehicle. Exemplar models provide explanations for concepts’ typicality ratings, the effects of typicality on categorization time, and effects due to the variability of instances within a category.

The work of Kahneman and Tversky [13] illustrated that people use exemplars when making categorizations and decisions. In one of their experiments, it was found that participants estimated the frequency of occurrence of different types of events by finding several exemplars to base their approximation on. For example, when participants were asked if there are more words in the English language that either start with "k" or have "k" as the third letter, most chose the first option (even though this is incorrect). Participants presumably did so because they could generate more exemplars of words starting with "k" than they could of words with "k" as the third letter in the word. (This particular experiment also ties to the availability heuristic, by which we guess probability by the ease with which an example comes to mind.) [9]

In categorization studies, participants sometimes conclude that a new stimuli is not a member of a certain category by finding a counter exemplar. For example, participants based their disagreement with the statement, "all birds are eagles" on their retrieval of memories of birds that weren't eagles, such as robins. If participants used exemplars to make disagreeing decisions, they also use exemplars to make reaffirming decisions about category membership. [9]

A study by Barsalou et al. asserts that the categorization of event exemplars differs from the categorization of individual exemplars. Feature frequency controls how events are categorized, adding to a more summarized exemplar grouping while individuals are more often categorized separately, creating a new group when a new individual is encountered. [14]

There is evidence supporting that the exemplar-based approach can be more accurate than the prototype approach. [15] Exemplar models are more successful when learning complex concepts rather than simple concepts. [16] [17]

See also

Related Research Articles

<span class="mw-page-title-main">Concept</span> Mental representation or an abstract object

A concept is defined as an abstract idea. It is understood to be a fundamental building block underlying principles, thoughts, and beliefs. Concepts play an important role in all aspects of cognition. As such, concepts are studied within such disciplines as linguistics, psychology, and philosophy, and these disciplines are interested in the logical and psychological structure of concepts, and how they are put together to form thoughts and sentences. The study of concepts has served as an important flagship of an emerging interdisciplinary approach, cognitive science.

Categorization is a type of cognition involving conceptual differentiation between characteristics of conscious experience, such as objects, events, or ideas. It involves the abstraction and differentiation of aspects of experience by sorting and distinguishing between groupings, through classification or typification on the basis of traits, features, similarities or other criteria that are universal to the group. Categorization is considered one of the most fundamental cognitive abilities, and it is studied particularly by psychology and cognitive linguistics.

In philosophy of mind and cognitive science, folk psychology, or commonsense psychology, is a human capacity to explain and predict the behavior and mental state of other people. Processes and items encountered in daily life such as pain, pleasure, excitement, and anxiety use common linguistic terms as opposed to technical or scientific jargon. Folk psychology allows for an insight into social interactions and communication, thus stretching the importance of connection and how it is experienced.

<span class="mw-page-title-main">Animal cognition</span> Intelligence of non-human animals

Animal cognition encompasses the mental capacities of non-human animals including insect cognition. The study of animal conditioning and learning used in this field was developed from comparative psychology. It has also been strongly influenced by research in ethology, behavioral ecology, and evolutionary psychology; the alternative name cognitive ethology is sometimes used. Many behaviors associated with the term animal intelligence are also subsumed within animal cognition.

Semantic memory refers to general world knowledge that humans have accumulated throughout their lives. This general knowledge is intertwined in experience and dependent on culture. New concepts are learned by applying knowledge learned from things in the past.

Prototype theory is a theory of categorization in cognitive science, particularly in psychology and cognitive linguistics, in which there is a graded degree of belonging to a conceptual category, and some members are more central than others. It emerged in 1971 with the work of psychologist Eleanor Rosch, and it has been described as a "Copernican Revolution" in the theory of categorization for its departure from the traditional Aristotelian categories. It has been criticized by those that still endorse the traditional theory of categories, like linguist Eugenio Coseriu and other proponents of the structural semantics paradigm.

Self-referential encoding is a method of organizing information in one's memory in which one interprets incoming information in relation to oneself, using one's self-concept as a background. Examples include being able to attribute personality traits to oneself or to identify recollected episodes as being personal memories of the past. The implications of self-referential processing are evident in many psychological phenomena. For example, the "cocktail party effect" notes that people attend to the sound of their names even during other conversation or more prominent, distracting noise. Also, people tend to evaluate things related to themselves more positively. For example, people tend to prefer their own initials over other letters. The self-reference effect (SRE) has received the most attention through investigations into memory. The concepts of self-referential encoding and the SRE rely on the notion that relating information to the self during the process of encoding it in memory facilitates recall, hence the effect of self-reference on memory. In essence, researchers have investigated the potential mnemonic properties of self-reference.

Speech perception is the process by which the sounds of language are heard, interpreted, and understood. The study of speech perception is closely linked to the fields of phonology and phonetics in linguistics and cognitive psychology and perception in psychology. Research in speech perception seeks to understand how human listeners recognize speech sounds and use this information to understand spoken language. Speech perception research has applications in building computer systems that can recognize speech, in improving speech recognition for hearing- and language-impaired listeners, and in foreign-language teaching.

Artificial grammar learning (AGL) is a paradigm of study within cognitive psychology and linguistics. Its goal is to investigate the processes that underlie human language learning by testing subjects' ability to learn a made-up grammar in a laboratory setting. It was developed to evaluate the processes of human language learning but has also been utilized to study implicit learning in a more general sense. The area of interest is typically the subjects' ability to detect patterns and statistical regularities during a training phase and then use their new knowledge of those patterns in a testing phase. The testing phase can either use the symbols or sounds used in the training phase or transfer the patterns to another set of symbols or sounds as surface structure.

Concept learning, also known as category learning, concept attainment, and concept formation, is defined by Bruner, Goodnow, & Austin (1967) as "the search for and listing of attributes that can be used to distinguish exemplars from non exemplars of various categories". More simply put, concepts are the mental categories that help us classify objects, events, or ideas, building on the understanding that each object, event, or idea has a set of common relevant features. Thus, concept learning is a strategy which requires a learner to compare and contrast groups or categories that contain concept-relevant features with groups or categories that do not contain concept-relevant features.

The cross-race effect is the tendency to more easily recognize faces that belong to one's own racial group, or racial groups that one has been in contact with. In social psychology, the cross-race effect is described as the "ingroup advantage," whereas in other fields, the effect can be seen as a specific form of the "ingroup advantage" since it is only applied in interracial or inter-ethnic situations. The cross-race effect is thought to contribute to difficulties in cross-race identification, as well as implicit racial bias.

Self-categorization theory is a theory in social psychology that describes the circumstances under which a person will perceive collections of people as a group, as well as the consequences of perceiving people in group terms. Although the theory is often introduced as an explanation of psychological group formation, it is more accurately thought of as general analysis of the functioning of categorization processes in social perception and interaction that speaks to issues of individual identity as much as group phenomena. It was developed by John Turner and colleagues, and along with social identity theory it is a constituent part of the social identity approach. It was in part developed to address questions that arose in response to social identity theory about the mechanistic underpinnings of social identification.

Indirect memory tests assess the retention of information without direct reference to the source of information. Participants are given tasks designed to elicit knowledge that was acquired incidentally or unconsciously and is evident when performance shows greater inclination towards items initially presented than new items. Performance on indirect tests may reflect contributions of implicit memory, the effects of priming, a preference to respond to previously experienced stimuli over novel stimuli. Types of indirect memory tests include the implicit association test, the lexical decision task, the word stem completion task, artificial grammar learning, word fragment completion, and the serial reaction time task.

Perceptual learning is learning better perception skills such as differentiating two musical tones from one another or categorizations of spatial and temporal patterns relevant to real-world expertise. Examples of this may include reading, seeing relations among chess pieces, and knowing whether or not an X-ray image shows a tumor.

<span class="mw-page-title-main">Embodied cognition</span> Interdisciplinary theory

Embodied cognition is the concept suggesting that many features of cognition are shaped by the state and capacities of the organism. The cognitive features include a wide spectrum of cognitive functions, such as perception biases, memory recall, comprehension and high-level mental constructs and performance on various cognitive tasks. The bodily aspects involve the motor system, the perceptual system, the bodily interactions with the environment (situatedness), and the assumptions about the world built the functional structure of organism's brain and body.

Robert Mark Nosofsky is an American psychologist. He is a professor in the department of psychological and brain sciences at Indiana University Bloomington, who is known for his exemplar theory. His research interest are categorization, recognition memory, math modeling, combining formal modeling and FMRI Studies. His research is in the development and testing of formal mathematical models of perceptual category learning and representation.

Intuitive statistics, or folk statistics, is the cognitive phenomenon where organisms use data to make generalizations and predictions about the world. This can be a small amount of sample data or training instances, which in turn contribute to inductive inferences about either population-level properties, future data, or both. Inferences can involve revising hypotheses, or beliefs, in light of probabilistic data that inform and motivate future predictions. The informal tendency for cognitive animals to intuitively generate statistical inferences, when formalized with certain axioms of probability theory, constitutes statistics as an academic discipline.

The frequency illusion is a cognitive bias in which a person notices a specific concept, word, or product more frequently after recently becoming aware of it.

Association in psychology refers to a mental connection between concepts, events, or mental states that usually stems from specific experiences. Associations are seen throughout several schools of thought in psychology including behaviorism, associationism, psychoanalysis, social psychology, and structuralism. The idea stems from Plato and Aristotle, especially with regard to the succession of memories, and it was carried on by philosophers such as John Locke, David Hume, David Hartley, and James Mill. It finds its place in modern psychology in such areas as memory, learning, and the study of neural pathways.

John Kendall Kruschke is an American psychologist and statistician known for his work in connectionist models of human learning, and in Bayesian statistical analysis. He is Provost Professor Emeritus in the Department of Psychological and Brain Sciences at Indiana University Bloomington. He won the Troland Research Award from the National Academy of Sciences in 2002.

References

  1. Nosofsky, R.M., Pothos, E.M., Wills, A.J. (2011). The Generalized Context Model: An Exemplar Model of Classification. Formal Approaches to Categorization, 18–39.
  2. Cave, K. (2009). Prototype and exemplar theories of concepts [notes]. Retrieved from http://courses.umass.edu/psy315/prototype.html Archived 2015-05-02 at the Wayback Machine
  3. Lieto, Antonio; Radicioni, Daniele P.; Rho, Valentina (2017). "Dual PECCS: a cognitive system for conceptual representation and categorization" (PDF). Journal of Experimental & Theoretical Artificial Intelligence. 29 (2): 433–452. doi:10.1080/0952813X.2016.1198934. hdl: 2318/1603656 .
  4. Homa, D., Sterling, S., Trepel, L. (1981) Limitation of exemplar-based generalization and the abstraction of categorical information. Journal of Experimental Psychology: Human Learning and Memory 7 (6) pp. 418–439.
  5. Mack, M.L., Preston, A.R., Love, B.C. (2013) Decoding the brain’s algorithm for categorization from its neural implementation. Current Biology, 23 (20) pp. 2023–2027
  6. Hintzman, D.L., Ludlam, G. (1980) Differential forgetting of prototypes and old instances: Simulation by an exemplar-based classification model. Memory and Cognition in Psychonomic Society 8 (4) pp. 378–382
  7. Johansen, M.K., Fouquet, N., Savage, J., Shanks, D.R. (2013) Instance memorization and category influence: Challenging the evidence for multiple systems in category learning. Quarterly Journal of Experimental Psychology 66 (6) pp. 1204–1226
  8. Sternberg, R.J. (1999) The Nature of Cognition. MIT Press. Pp. 231–235
  9. 1 2 3 4 Smith, E., Medin, D. (1999). The Exemplar View. Concepts: Core Readings, 207–209.
  10. 1 2 3 Reisberg, D. (2013) Cognition: Exploring the Science of the Mind. 5th ed. W. W. Norton & Co. New York.
  11. Rouder, J. N., & Ratcliff, R. (2006). Comparing exemplar- and rule-based theories of categorization. Current Directions In Psychological Science (Wiley-Blackwell), 15(1), 9–13. doi:10.1111/j.0963-7214.2006.00397.x
  12. Novick, L.R. (2003). At the forefront of thought: The effect of media expose on airplane typicality. Psychonomic Bulletin & Review, 10, 971–974.
  13. Tversky, Amos; Kahneman, Daniel (1973). "Availability: A heuristic for judging frequency and probability". Cognitive Psychology. 5 (2): 207–232. doi:10.1016/0010-0285(73)90033-9. ISSN   0010-0285.
  14. Barsalou, L. W., Huttenlocher, J., Lamberts, K. (1998) Basing Categorization on Individuals and Events. Cognitive Psychology, 36, 203–272.
  15. Storms, G., De Boeck, P., & Ruts, W. (2000). Prototype and exemplar-based information in natural language categories. Journal of Memory and Language, 42, 51–73.
  16. Feldman, J. (2003). The simplicity principle in human concept learning. Current Directions in Psychological Science, 12, 227–232.
  17. Smith, J.D., & Minda, J.P. (2000). Thirty categorization results in search of a model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 3–27.