Exterior calculus identities

Last updated

This article summarizes several identities in exterior calculus, a mathematical notation used in differential geometry. [1] [2] [3] [4] [5]

Contents

Notation

The following summarizes short definitions and notations that are used in this article.

Manifold

, are -dimensional smooth manifolds, where . That is, differentiable manifolds that can be differentiated enough times for the purposes on this page.

, denote one point on each of the manifolds.

The boundary of a manifold is a manifold , which has dimension . An orientation on induces an orientation on .

We usually denote a submanifold by .

Tangent and cotangent bundles

, denote the tangent bundle and cotangent bundle, respectively, of the smooth manifold .

, denote the tangent spaces of , at the points , , respectively. denotes the cotangent space of at the point .

Sections of the tangent bundles, also known as vector fields, are typically denoted as such that at a point we have . Sections of the cotangent bundle, also known as differential 1-forms (or covector fields), are typically denoted as such that at a point we have . An alternative notation for is .

Differential k-forms

Differential -forms, which we refer to simply as -forms here, are differential forms defined on . We denote the set of all -forms as . For we usually write , , .

-forms are just scalar functions on . denotes the constant -form equal to everywhere.

Omitted elements of a sequence

When we are given inputs and a -form we denote omission of the th entry by writing

Exterior product

The exterior product is also known as the wedge product. It is denoted by . The exterior product of a -form and an -form produce a -form . It can be written using the set of all permutations of such that as

Directional derivative

The directional derivative of a 0-form along a section is a 0-form denoted

Exterior derivative

The exterior derivative is defined for all . We generally omit the subscript when it is clear from the context.

For a -form we have as the -form that gives the directional derivative, i.e., for the section we have , the directional derivative of along . [6]

For , [6]

Lie bracket

The Lie bracket of sections is defined as the unique section that satisfies

Tangent maps

If is a smooth map, then defines a tangent map from to . It is defined through curves on with derivative such that

Note that is a -form with values in .

Pull-back

If is a smooth map, then the pull-back of a -form is defined such that for any -dimensional submanifold

The pull-back can also be expressed as

Interior product

Also known as the interior derivative, the interior product given a section is a map that effectively substitutes the first input of a -form with . If and then

Metric tensor

Given a nondegenerate bilinear form on each that is continuous on , the manifold becomes a pseudo-Riemannian manifold. We denote the metric tensor , defined pointwise by . We call the signature of the metric. A Riemannian manifold has , whereas Minkowski space has .

Musical isomorphisms

The metric tensor induces duality mappings between vector fields and one-forms: these are the musical isomorphisms flat and sharp . A section corresponds to the unique one-form such that for all sections , we have:

A one-form corresponds to the unique vector field such that for all , we have:

These mappings extend via multilinearity to mappings from -vector fields to -forms and -forms to -vector fields through

Hodge star

For an n-manifold M, the Hodge star operator is a duality mapping taking a -form to an -form .

It can be defined in terms of an oriented frame for , orthonormal with respect to the given metric tensor :

Co-differential operator

The co-differential operator on an dimensional manifold is defined by

The Hodge–Dirac operator, , is a Dirac operator studied in Clifford analysis.

Oriented manifold

An -dimensional orientable manifold M is a manifold that can be equipped with a choice of an n-form that is continuous and nonzero everywhere on M.

Volume form

On an orientable manifold the canonical choice of a volume form given a metric tensor and an orientation is for any basis ordered to match the orientation.

Area form

Given a volume form and a unit normal vector we can also define an area form on the boundary

Bilinear form on k-forms

A generalization of the metric tensor, the symmetric bilinear form between two -forms , is defined pointwise on by

The -bilinear form for the space of -forms is defined by

In the case of a Riemannian manifold, each is an inner product (i.e. is positive-definite).

Lie derivative

We define the Lie derivative through Cartan's magic formula for a given section as

It describes the change of a -form along a flow associated to the section .

Laplace–Beltrami operator

The Laplacian is defined as .

Important definitions

Definitions on Ωk(M)

is called...

Cohomology

The -th cohomology of a manifold and its exterior derivative operators is given by

Two closed -forms are in the same cohomology class if their difference is an exact form i.e.

A closed surface of genus will have generators which are harmonic.

Dirichlet energy

Given , its Dirichlet energy is

Properties

Exterior derivative properties

( Stokes' theorem )
( cochain complex )
for ( Leibniz rule )
for ( directional derivative )
for

Exterior product properties

for ( alternating )
( associativity )
for ( compatibility of scalar multiplication )
( distributivity over addition )
for when is odd or . The rank of a -form means the minimum number of monomial terms (exterior products of one-forms) that must be summed to produce .

Pull-back properties

( commutative with )
( distributes over )
( contravariant )
for ( function composition )

Musical isomorphism properties

Interior product properties

( nilpotent )
for ( Leibniz rule )
for
for
for

Hodge star properties

for ( linearity )
for , , and the sign of the metric
( inversion )
for ( commutative with -forms )
for ( Hodge star preserves -form norm )
( Hodge dual of constant function 1 is the volume form )

Co-differential operator properties

( nilpotent )
and ( Hodge adjoint to )
if ( adjoint to )
In general,
for

Lie derivative properties

( commutative with )
( commutative with )
( Leibniz rule )

Exterior calculus identities

if
( bilinear form )
( Jacobi identity )

Dimensions

If

for
for

If is a basis, then a basis of is

Exterior products

Let and be vector fields.

Projection and rejection

( interior product dual to wedge )
for

If , then

Given the boundary with unit normal vector

Sum expressions

given a positively oriented orthonormal frame .

Hodge decomposition

If , such that[ citation needed ]

Poincaré lemma

If a boundaryless manifold has trivial cohomology , then any closed is exact. This is the case if M is contractible.

Relations to vector calculus

Identities in Euclidean 3-space

Let Euclidean metric .

We use differential operator

for .
( scalar triple product )
( cross product )
if
( scalar product )
( gradient )
( directional derivative )
( divergence )
( curl )
where is the unit normal vector of and is the area form on .
( divergence theorem )

Lie derivatives

( -forms )
( -forms )
if ( -forms on -manifolds )
if ( -forms )

Related Research Articles

In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.

<span class="mw-page-title-main">Exterior algebra</span> Algebra of exterior/ wedge products

In mathematics, the exterior algebra or Grassmann algebra of a vector space is an associative algebra that contains which has a product, called exterior product or wedge product and denoted with , such that for every vector in The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol and the fact that the product of two elements of are "outside"

In differential geometry, the Lie derivative, named after Sophus Lie by Władysław Ślebodziński, evaluates the change of a tensor field, along the flow defined by another vector field. This change is coordinate invariant and therefore the Lie derivative is defined on any differentiable manifold.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.

In mathematics, in set theory, the constructible universe, denoted by , is a particular class of sets that can be described entirely in terms of simpler sets. is the union of the constructible hierarchy. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory, and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

<span class="mw-page-title-main">LSZ reduction formula</span> Connection between correlation functions and the S-matrix

In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.

In mathematics, the interior product is a degree −1 (anti)derivation on the exterior algebra of differential forms on a smooth manifold. The interior product, named in opposition to the exterior product, should not be confused with an inner product. The interior product is sometimes written as

In mathematics, the Fubini–Study metric is a Kähler metric on a complex projective space CPn endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Eduard Study.

In mathematics, the Frölicher–Nijenhuis bracket is an extension of the Lie bracket of vector fields to vector-valued differential forms on a differentiable manifold.

In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non-circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of relevance to proof theory still have computable ordinal notations. However, it is not possible to decide effectively whether a given putative ordinal notation is a notation or not ; various more-concrete ways of defining ordinals that definitely have notations are available.

In set theory, Silver machines are devices used for bypassing the use of fine structure in proofs of statements holding in L. They were invented by set theorist Jack Silver as a means of proving global square holds in the constructible universe.

In set theory, a mathematical discipline, the Jensen hierarchy or J-hierarchy is a modification of Gödel's constructible hierarchy, L, that circumvents certain technical difficulties that exist in the constructible hierarchy. The J-Hierarchy figures prominently in fine structure theory, a field pioneered by Ronald Jensen, for whom the Jensen hierarchy is named. Rudimentary functions describe a method for iterating through the Jensen hierarchy.

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Since the 8th and 9th centuries, the sine and other trigonometric functions have been used in Islamic mathematics and astronomy, reforming the production of sine tables. Khwarizmi and Habash al-Hasib later produced a set of trigonometric tables.

In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a map associated to a deformation of a scheme or complex manifold X, taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X.

Buchholz's psi-functions are a hierarchy of single-argument ordinal functions introduced by German mathematician Wilfried Buchholz in 1986. These functions are a simplified version of the -functions, but nevertheless have the same strength as those. Later on this approach was extended by Jäger and Schütte.

In set theory and logic, Buchholz's ID hierarchy is a hierarchy of subsystems of first-order arithmetic. The systems/theories are referred to as "the formal theories of ν-times iterated inductive definitions". IDν extends PA by ν iterated least fixed points of monotone operators.

In mathematics, Rathjen's  psi function is an ordinal collapsing function developed by Michael Rathjen. It collapses weakly Mahlo cardinals to generate large countable ordinals. A weakly Mahlo cardinal is a cardinal such that the set of regular cardinals below is closed under . Rathjen uses this to diagonalise over the weakly inaccessible hierarchy.

In differential geometry, a branch of mathematics, the Moser's trick is a method to relate two differential forms and on a smooth manifold by a diffeomorphism such that , provided that one can find a family of vector fields satisfying a certain ODE.

References

  1. Crane, Keenan; de Goes, Fernando; Desbrun, Mathieu; Schröder, Peter (21 July 2013). "Digital geometry processing with discrete exterior calculus". ACM SIGGRAPH 2013 Courses. pp. 1–126. doi:10.1145/2504435.2504442. ISBN   9781450323390. S2CID   168676.
  2. Schwarz, Günter (1995). Hodge Decomposition – A Method for Solving Boundary Value Problems. Springer. ISBN   978-3-540-49403-4.
  3. Cartan, Henri (26 May 2006). Differential forms (Dover ed.). Dover Publications. ISBN   978-0486450100.
  4. Bott, Raoul; Tu, Loring W. (16 May 1995). Differential forms in algebraic topology. Springer. ISBN   978-0387906133.
  5. Abraham, Ralph; J.E., Marsden; Ratiu, Tudor (6 December 2012). Manifolds, tensor analysis, and applications (2nd ed.). Springer-Verlag. ISBN   978-1-4612-1029-0.
  6. 1 2 Tu, Loring W. (2011). An introduction to manifolds (2nd ed.). New York: Springer. pp. 34, 233. ISBN   9781441974006. OCLC   682907530.