F-algebra

Last updated
The commutative diagram, which defines a property required by morphisms of the original category, so that they can be morphisms of the newly defined category of F-algebras. F algebra.svg
The commutative diagram, which defines a property required by morphisms of the original category, so that they can be morphisms of the newly defined category of F-algebras.

In mathematics, specifically in category theory, F-algebras generalize the notion of algebraic structure. Rewriting the algebraic laws in terms of morphisms eliminates all references to quantified elements from the axioms, and these algebraic laws may then be glued together in terms of a single functor F, the signature .

Contents

F-algebras can also be used to represent data structures used in programming, such as lists and trees.

The main related concepts are initial F-algebras which may serve to encapsulate the induction principle, and the dual construction F-coalgebras.

Definition

If is a category, and is an endofunctor of , then an -algebra is a tuple , where is an object of and is a -morphism . The object is called the carrier of the algebra. When it is permissible from context, algebras are often referred to by their carrier only instead of the tuple.

A homomorphism from an -algebra to an -algebra is a -morphism such that , according to the following commutative diagram:

F algebra.svg

Equipped with these morphisms, -algebras constitute a category.

The dual construction are -coalgebras, which are objects together with a morphism .

Examples

Groups

Classically, a group is a set with a group law, with , satisfying three axioms: the existence of an identity element, the existence of an inverse for each element of the group, and associativity.

To put this in a categorical framework, first define the identity and inverse as functions (morphisms of the set ) by with , and with . Here denotes the set with one element , which allows one to identify elements with morphisms .

It is then possible to write the axioms of a group in terms of functions (note how the existential quantifier is absent):

  • ,
  • ,
  • .

Then this can be expressed with commutative diagrams: [1] [2]

F Algebra Associativity Commutative Diagram.svg              F Algebra Inverse Commutative Diagram.svg              F Algebra Identity Commutative Diagram.svg             

Now use the coproduct (the disjoint union of sets) to glue the three morphisms in one: according to

Thus a group is an -algebra where is the functor . However the reverse is not necessarily true. Some -algebra where is the functor are not groups.

The above construction is used to define group objects over an arbitrary category with finite products and a terminal object . When the category admits finite coproducts, the group objects are -algebras. For example, finite groups are -algebras in the category of finite sets and Lie groups are -algebras in the category of smooth manifolds with smooth maps.

Algebraic structures

Going one step ahead of universal algebra, most algebraic structures are F-algebras. For example, abelian groups are F-algebras for the same functor F(G) = 1 + G + G×G as for groups, with an additional axiom for commutativity: mt = m, where t(x,y) = (y,x) is the transpose on GxG.

Monoids are F-algebras of signature F(M) = 1 + M×M. In the same vein, semigroups are F-algebras of signature F(S) = S×S

Rings, domains and fields are also F-algebras with a signature involving two laws +,•: R×R R, an additive identity 0: 1 R, a multiplicative identity 1: 1 R, and an additive inverse for each element -: RR. As all these functions share the same codomain R they can be glued into a single signature function 1 + 1 + R + R×R + R×RR, with axioms to express associativity, distributivity, and so on. This makes rings F-algebras on the category of sets with signature 1 + 1 + R + R×R + R×R.

Alternatively, we can look at the functor F(R) = 1 + R×R in the category of abelian groups. In that context, the multiplication is a homomorphism, meaning m(x+y, z) = m(x,z)+m(y,z) and m(x,y+z) = m(x,y)+m(x,z), which are precisely the distributivity conditions. Therefore, a ring is an F-algebra of signature 1 + R×R over the category of abelian groups which satisfies two axioms (associativity and identity for the multiplication).

When we come to vector spaces and modules, the signature functor includes a scalar multiplication k×EE, and the signature F(E) = 1 + E + k×E is parametrized by k over the category of fields, or rings.

Algebras over a field can be viewed as F-algebras of signature 1 + 1 + A + A×A + A×A + k×A over the category of sets, of signature 1 + A×A over the category of modules (a module with an internal multiplication), and of signature k×A over the category of rings (a ring with a scalar multiplication), when they are associative and unitary.

Lattice

Not all mathematical structures are F-algebras. For example, a poset P may be defined in categorical terms with a morphism s:P × P Ω, on a subobject classifier (Ω = {0,1} in the category of sets and s(x,y)=1 precisely when xy). The axioms restricting the morphism s to define a poset can be rewritten in terms of morphisms. However, as the codomain of s is Ω and not P, it is not an F-algebra.

However, lattices, which are partial orders in which every two elements have a supremum and an infimum, and in particular total orders, are F-algebras. This is because they can equivalently be defined in terms of the algebraic operations: xy = inf(x,y) and xy = sup(x,y), subject to certain axioms (commutativity, associativity, absorption and idempotency). Thus they are F-algebras of signature P x P + P x P. It is often said that lattice theory draws on both order theory and universal algebra.

Recurrence

Consider the functor that sends a set to . Here, denotes the category of sets, denotes the usual coproduct given by the disjoint union, and is a terminal object (i.e. any singleton set). Then, the set of natural numbers together with the function —which is the coproduct of the functions and —is an F-algebra.

Initial F-algebra

If the category of F-algebras for a given endofunctor F has an initial object, it is called an initial algebra. The algebra in the above example is an initial algebra. Various finite data structures used in programming, such as lists and trees, can be obtained as initial algebras of specific endofunctors.

Types defined by using least fixed point construct with functor F can be regarded as an initial F-algebra, provided that parametricity holds for the type. [3]

See also Universal algebra.

Terminal F-coalgebra

In a dual way, a similar relationship exists between notions of greatest fixed point and terminal F-coalgebra. These can be used for allowing potentially infinite objects while maintaining strong normalization property. [3] In the strongly normalizing Charity programming language (i.e. each program terminates in it), coinductive data types can be used to achieve surprising results, enabling the definition of lookup constructs to implement such “strong” functions like the Ackermann function. [4]

See also

Notes

  1. The vertical arrows without labels in the second diagram must be unique since * is terminal.
  2. Strictly speaking, (i,id) and (id,i) are labelled inconsistently with the other diagrams as these morphisms "diagonalise" first.
  3. 1 2 Philip Wadler: Recursive types for free! Archived 2007-10-16 at the Wayback Machine University of Glasgow, June 1990. Draft.
  4. Robin Cockett: Charitable Thoughts (ps Archived 2020-12-29 at the Wayback Machine and ps.gz Archived 2020-12-29 at the Wayback Machine )

Related Research Articles

In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.

In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

In mathematics, the Yoneda lemma is a fundamental result in category theory. It is an abstract result on functors of the type morphisms into a fixed object. It is a vast generalisation of Cayley's theorem from group theory. It allows the embedding of any locally small category into a category of functors defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda.

In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.

In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

In mathematics, an algebraic structure consists of a nonempty set A, a collection of operations on A, and a finite set of identities, known as axioms, that these operations must satisfy.

In mathematics, a direct limit is a way to construct a object from many objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any category. The way they are put together is specified by a system of homomorphisms between those smaller objects. The direct limit of the objects , where ranges over some directed set , is denoted by .

In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by closed monoidal categories, whose internal language, linear type systems, are suitable for both quantum and classical computation.

In mathematics, coalgebras or cogebras are structures that are dual to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions.

In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic dual notion to the categorical product, which means the definition is the same as the product but with all arrows reversed. Despite this seemingly innocuous change in the name and notation, coproducts can be and typically are dramatically different from products.

In category theory, a branch of mathematics, a monad is a monoid in the category of endofunctors of some fixed category. An endofunctor is a functor mapping a category to itself, and a monad is an endofunctor together with two natural transformations required to fulfill certain coherence conditions. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories. Monads are also useful in the theory of datatypes, the denotational semantics of imperative programming languages, and in functional programming languages, allowing languages without mutable state to do things such as simulate for-loops; see Monad.

In mathematics, the tensor algebra of a vector space V, denoted T(V) or T(V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product. It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property (see below).

In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions.

In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces. Calculus of fractions is another name for working in a localized category.

In mathematics, specifically in category theory, an -coalgebra is a structure defined according to a functor , with specific properties as defined below. For both algebras and coalgebras, a functor is a convenient and general way of organizing a signature. This has applications in computer science: examples of coalgebras include lazy evaluation, infinite data structures, such as streams, and also transition systems.

In mathematics, specifically in category theory, an exponential object or map object is the categorical generalization of a function space in set theory. Categories with all finite products and exponential objects are called cartesian closed categories. Categories without adjoined products may still have an exponential law.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, in the theory of Hopf algebras, a Hopf algebroid is a generalisation of weak Hopf algebras, certain skew Hopf algebras and commutative Hopf k-algebroids. If k is a field, a commutative k-algebroid is a cogroupoid object in the category of k-algebras; the category of such is hence dual to the category of groupoid k-schemes. This commutative version has been used in 1970-s in algebraic geometry and stable homotopy theory. The generalization of Hopf algebroids and its main part of the structure, associative bialgebroids, to the noncommutative base algebra was introduced by J.-H. Lu in 1996 as a result on work on groupoids in Poisson geometry. They may be loosely thought of as Hopf algebras over a noncommutative base ring, where weak Hopf algebras become Hopf algebras over a separable algebra. It is a theorem that a Hopf algebroid satisfying a finite projectivity condition over a separable algebra is a weak Hopf algebra, and conversely a weak Hopf algebra H is a Hopf algebroid over its separable subalgebra HL. The antipode axioms have been changed by G. Böhm and K. Szlachányi in 2004 for tensor categorical reasons and to accommodate examples associated to depth two Frobenius algebra extensions.

References