Faecal egg count reduction test

Last updated

The fecal egg count reduction test was suggested in the World Association for the Advancement of Veterinary Parasitology guideline for estimating the reduction in fecal egg counts and its corresponding confidence interval. [1] The results of this test can be used to determine the anthelmintic resistance status of the animals.

Contents

Generally an analytical sensitivity of 50 is used, 15 is also possible if a greater sensitivity is desired. In order to reduce the counting variability, using groups of at least 10-15 animals was suggested, depending on the animal species of interest. In addition, the mean pre-treatment fecal egg counts should be at least 150 eggs per gram, otherwise the test can give unreliable results.

Mathematical formulation

Suppose a group of animals received anthelmintic treatment and a group of animals serves as control. The percentage reduction in fecal egg counts can be calculated as

where and denote the mean counts of the treatment and the control group. Assuming independence, the estimated asymptotic variance of the log ratio is given by

where and denote the means of random samples, and denote the sample variance of the treatment and the control group counts. The variance can be used to construct an approximate 95% CI of the log ratio using the 97.5% and the 2.5% quantile of a Student's t-distribution with degrees of freedom. The CI for the log-ratio can be then transformed back to obtain the 95% CI for the estimated reduction.

Results interpretation

The World Association for the Advancement of Veterinary Parasitology guideline [1] states that for sheep and goats, the resistance is present if

(i) the percentage reduction in fecal egg counts is less than 95% and,

(ii) the corresponding lower 95% confidence limit is less than 90%.

If only one of these two criterion is met, then an anthelmintic resistance is suspected. Different thresholds have been suggested for other livestock.

Criticism and current alternatives

Firstly, the conventional counting techniques such as the McMaster method introduce additional variability in the counts which is not accounted for in the fecal egg count reduction test. [2] As a result, the estimated percentage reduction are less reliable especially for low counts. Secondly, the distribution of egg counts is typically aggregated within the host population. There were several attempts to propose more elaborate statistical models in the past years. [3] [4] An emerging class of statistical model, namely Bayesian hierarchical models, has been proposed to overcome these problems. [5] [6] [7] [8] [9] Easy-to-use software [10] [11] and website interface [12] based on those sophisticated but reliable statistical models are available to aid veterinary researchers.

Related Research Articles

<span class="mw-page-title-main">Helminthiasis</span> Any macroparasitic disease caused by helminths

Helminthiasis, also known as worm infection, is any macroparasitic disease of humans and other animals in which a part of the body is infected with parasitic worms, known as helminths. There are numerous species of these parasites, which are broadly classified into tapeworms, flukes, and roundworms. They often live in the gastrointestinal tract of their hosts, but they may also burrow into other organs, where they induce physiological damage.

<span class="mw-page-title-main">Fasciolosis</span> A parasitic worm infection

Fasciolosis is a parasitic worm infection caused by the common liver fluke Fasciola hepatica as well as by Fasciola gigantica. The disease is a plant-borne trematode zoonosis, and is classified as a neglected tropical disease (NTD). It affects humans, but its main host is ruminants such as cattle and sheep. The disease progresses through four distinct phases; an initial incubation phase of between a few days up to three months with little or no symptoms; an invasive or acute phase which may manifest with: fever, malaise, abdominal pain, gastrointestinal symptoms, urticaria, anemia, jaundice, and respiratory symptoms. The disease later progresses to a latent phase with less symptoms and ultimately into a chronic or obstructive phase months to years later. In the chronic state the disease causes inflammation of the bile ducts, gall bladder and may cause gall stones as well as fibrosis. While chronic inflammation is connected to increased cancer rates, it is unclear whether fasciolosis is associated with increased cancer risk.

<span class="mw-page-title-main">Ivermectin</span> Medication for parasite infestations

Ivermectin is an antiparasitic drug. After its discovery in 1975, its first uses were in veterinary medicine to prevent and treat heartworm and acariasis. Approved for human use in 1987, today it is used to treat infestations including head lice, scabies, river blindness (onchocerciasis), strongyloidiasis, trichuriasis, ascariasis and lymphatic filariasis. It works through many mechanisms to kill the targeted parasites, and can be taken by mouth, or applied to the skin for external infestations. It belongs to the avermectin family of medications.

<i>Haemonchus contortus</i> Species of roundworm

Haemonchus contortus, also known as the barber's pole worm, is a very common parasite and one of the most pathogenic nematodes of ruminants. Adult worms attach to abomasal mucosa and feed on the blood. This parasite is responsible for anemia, oedema, and death of infected sheep and goats, mainly during summer in warm, humid climates.

<i>Fasciola gigantica</i> Species of fluke

Fasciola gigantica is a parasitic flatworm of the class Trematoda, which causes tropical fascioliasis. It is regarded as one of the most important single platyhelminth infections of ruminants in Asia and Africa. Estimates of infection rates are as high as 80–100% in some countries. The infection is commonly called fasciolosis.

Egg hatch assay (EHA), also called an egg hatch test (EHT), is a method used to determine a given parasite's resistance to extant drug therapy.

<i>Neospora caninum</i> Species of Conoidasida in the apicomplex phylum

Neospora caninum is a coccidian parasite that was identified as a species in 1988. Prior to this, it was misclassified as Toxoplasma gondii due to structural similarities. The genome sequence of Neospora caninum has been determined by the Wellcome Trust Sanger Institute and the University of Liverpool. Neospora caninum is an important cause of spontaneous abortion in infected livestock.

<span class="mw-page-title-main">Taeniasis</span> Parasitic disease due to infection with tapeworms belonging to the genus Taenia

Taeniasis is an infection within the intestines by adult tapeworms belonging to the genus Taenia. There are generally no or only mild symptoms. Symptoms may occasionally include weight loss or abdominal pain. Segments of tapeworm may be seen in the stool. Complications of pork tapeworm may include cysticercosis.

<span class="mw-page-title-main">Parasitic worm</span> Large type of parasitic organism

Parasitic worms, also known as helminths, are large macroparasites; adults can generally be seen with the naked eye. Many are intestinal worms that are soil-transmitted and infect the gastrointestinal tract. Other parasitic worms such as schistosomes reside in blood vessels.

<i>Blastocystis</i> Genus of single-celled organisms

Blastocystis is a genus of single-celled heterokont parasites belonging to the Stramenopiles that includes algae, diatoms, and water molds. Blastocystis consists of several species, living in the gastrointestinal tracts of species as diverse as humans, farm animals, birds, rodents, reptiles, amphibians, fish, and cockroaches. Blastocystis exhibits low host specificity, and many different species of Blastocystis can infect humans, and by current convention, any of these species would be identified as Blastocystis hominis.

<span class="mw-page-title-main">Thelaziasis</span> Medical condition

Thelaziasis is the term for infestation with parasitic nematodes of the genus Thelazia. The adults of all Thelazia species discovered so far inhabit the eyes and associated tissues of various mammal and bird hosts, including humans. Thelazia nematodes are often referred to as "eyeworms".

<i>Rhipicephalus microplus</i> Variety of tick

The Asian blue tick is an economically important tick that parasitises a variety of livestock species especially cattle, on which it is the most economically significant ectoparasite in the world. It is known as the Australian cattle tick, southern cattle tick, Cuban tick, Madagascar blue tick, and Puerto Rican Texas fever tick.

<span class="mw-page-title-main">Anthelmintic</span> Antiparasitic drugs that expel parasitic worms (helminths) from the body

Anthelmintics or antihelminthics are a group of antiparasitic drugs that expel parasitic worms (helminths) and other internal parasites from the body by either stunning or killing them and without causing significant damage to the host. They may also be called vermifuges or vermicides. Anthelmintics are used to treat people who are infected by helminths, a condition called helminthiasis. These drugs are also used to treat infected animals.

<i>Teladorsagia circumcincta</i> Species of roundworm

Teladorsagia circumcincta is a nematode that is one of the most important parasites of sheep and goats. It was previously known as Ostertagia circumcincta and is colloquially known as the brown stomach worm. It is common in cool, temperate areas, such as south-eastern and south-western Australia and the United Kingdom. There is considerable variation among lambs and kids in susceptibility to infection. Much of the variation is genetic and influences the immune response. The parasite induces a type I hypersensitivity response which is responsible for the relative protein deficiency which is characteristic of severely infected animals. There are mechanistic mathematical models which can predict the course of infection. There are a variety of ways to control the infection and a combination of control measures is likely to provide the most effective and sustainable control.

Ancylostoma ceylanicum is a parasitic roundworm belonging to the genus Ancylostoma. It is a hookworm both of humans and of other mammals such as dogs, cats, and golden hamsters. It is the only zoonotic hookworm species that is able to produce symptomatic infections in humans, with the majority of cases being in Southeast Asia.

<i>Taenia hydatigena</i> Species of flatworm

Taenia hydatigena is one of the adult forms of the canine and feline tapeworm. This infection has a worldwide geographic distribution. Humans with taeniasis can infect other humans or animal intermediate hosts by eggs and gravid proglottids passed in the feces.

<i>Cooperia oncophora</i> Species of roundworm

Cooperia oncophora is one of the most common intestinal parasitic nematodes in cattle in temperate regions. Infections with C. oncophora may result in mild clinical symptoms, but can lead to weight loss and damage of the small intestine, especially when co-infections with other nematodes such as O. ostertagi occur. Infections are usually treated with broad-spectrum anthelmintics such as benzimidazole, but resistance to these drugs has developed in the last decades and is now very common. C. oncophora has a direct life cycle. Infective larvae are ingested by the host. The larvae grow to adults, which reproduce in the small intestines. Eggs are shed onto the pasture with the faeces, which leads to new infections. Co-infections with other gastro-intestinal nematodes such as O. ostertagi and H. contortus are common.

Ostertagia ostertagi, commonly known as the medium stomach worm or brown stomach worm, is a parasitic nematode of cattle. O. ostertagi can also be found to a lesser extent in sheep, goats, wild ruminants, and horses. It causes ostertagiosis, which is potentially fatal in cattle. It is found worldwide and is economically important to cattle industries, particularly those found in temperate climates.

<i>Cooperia</i> (nematode) Genus of roundworms

Cooperia is a genus of nematode from the Cooperiidae family that is one of the most common intestinal parasitic nematodes in cattle in temperate regions. Infections with Cooperia may result in mild clinical symptoms, but can lead to weight loss and damage of the small intestine, especially when co-infections with other nematodes such as Ostertagia ostertagi occur. Infections are usually treated with broad-spectrum anthelmintics such as benzimidazole, but resistance to these drugs has developed in the last decades and is now very common. Cooperia has a direct life cycle. Infective larvae are ingested by the host. The larvae grow to adults, which reproduce in the small intestines. Eggs are shed onto the pasture with the faeces, which leads to new infections. Co-infections with other gastro-intestinal nematodes such as O. ostertagi and Haemonchus contortus are common.

The American Association of Veterinary Parasitologists is a professional association for veterinary parasitology. Despite the name it primarily serves both the United States and Canada and to a lesser degree the entire world. The AAVP connects veterinary parasitologists to each other and provides recommendations as to research and practice methods.

References

  1. 1 2 Coles, G.C.; Bauer, C.; Borgsteede, F.H.M.; Geerts, S.; Klei, T.R.; Taylor, M.A.; Waller, P.J. (September 1992). "World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance". Veterinary Parasitology. 44 (1–2): 35–44. doi:10.1016/0304-4017(92)90141-U. PMID   1441190.
  2. Torgerson, Paul R.; Paul, Michaela; Lewis, Fraser I. (2012-09-10). "The contribution of simple random sampling to observed variations in faecal egg counts" (PDF). Veterinary Parasitology. 188 (3–4): 397–401. doi:10.1016/j.vetpar.2012.03.043. PMID   22521975.
  3. Torgerson, P. R.; Schnyder, M.; Hertzberg, H. (2005-03-31). "Detection of anthelmintic resistance: a comparison of mathematical techniques". Veterinary Parasitology. 128 (3–4): 291–298. doi:10.1016/j.vetpar.2004.12.009. PMID   15740866.
  4. Dobson, R. J.; Hosking, B. C.; Jacobson, C. L.; Cotter, J. L.; Besier, R. B.; Stein, P. A.; Reid, S. A. (2012-05-04). "Preserving new anthelmintics: A simple method for estimating faecal egg count reduction test (FECRT) confidence limits when efficacy and/or nematode aggregation is high". Veterinary Parasitology. Special issue: Novel Approaches to the Control of Helminth Parasites of Livestock. 186 (1–2): 79–92. doi:10.1016/j.vetpar.2011.11.049. PMID   22154971.
  5. Torgerson, Paul R.; Paul, Michaela; Furrer, Reinhard (2014-04-01). "Evaluating faecal egg count reduction using a specifically designed package "eggCounts" in R and a user friendly web interface" (PDF). International Journal for Parasitology. 44 (5): 299–303. doi:10.1016/j.ijpara.2014.01.005. PMID   24556564.
  6. Levecke, Bruno; Anderson, Roy M.; Berkvens, Dirk; Charlier, Johannes; Devleesschauwer, Brecht; Speybroeck, Niko; Vercruysse, Jozef; Van Aelst, Stefan (2015-01-01). "Mathematical Inference on Helminth Egg Counts in Stool and Its Applications in Mass Drug Administration Programmes to Control Soil-Transmitted Helminthiasis in Public Health". In Basáñez, Roy M. Anderson and Maria Gloria (ed.). Advances in Parasitology. Mathematical Models for Neglected Tropical Diseases: Essential Tools for Control and Elimination, Part A. Vol. 87. Academic Press. pp. 193–247. doi:10.1016/bs.apar.2015.01.001. ISBN   9780128032565. PMID   25765196.
  7. Denwood, M. J.; Reid, S. W. J.; Love, S.; Nielsen, M. K.; Matthews, L.; McKendrick, I. J.; Innocent, G. T. (2010-03-01). "Comparison of three alternative methods for analysis of equine Faecal Egg Count Reduction Test data". Preventive Veterinary Medicine. SVEPM 2009Papers presented at the 2009 annual meeting of the Society for Veterinary Epidemiology and Preventive Medicine (SVEPM). 93 (4): 316–323. doi:10.1016/j.prevetmed.2009.11.009. PMID   19962203.
  8. Wang, Craig; Torgerson, Paul R.; Höglund, Johan; Furrer, Reinhard (2017-02-15). "Zero-inflated hierarchical models for faecal egg counts to assess anthelmintic efficacy". Veterinary Parasitology. 235: 20–28. doi: 10.1016/j.vetpar.2016.12.007 . PMID   28215863.
  9. Wang, Craig; Torgerson, Paul R.; Kaplan, Ray M.; George, Melissa M.; Furrer, Reinhard (2018-08-16). "Modelling anthelmintic resistance by extending eggCounts package to allow individual efficacy". International Journal for Parasitology: Drugs and Drug Resistance. 8 (3): 386–393. doi:10.1016/j.ijpddr.2018.07.003. PMC   6091319 . PMID   30103206.
  10. "eggCounts". CRAN R Packages.
  11. "bayescount". CRAN R Packages.
  12. "Modelling Faecal Egg Counts" . Retrieved 14 October 2016.