Faradaic current

Last updated

In electrochemistry, the faradaic current is the electric current generated by the reduction or oxidation of some chemical substance at an electrode. [1] [2] The net faradaic current is the algebraic sum of all the faradaic currents flowing through an indicator electrode or working electrode. [3]

Contents

Limiting current

The limiting current in electrochemistry is the limiting value of a faradaic current that is approached as the rate of charge transfer to an electrode is increased. The limiting current can be approached, for example, by increasing the electric potential or decreasing the rate of mass transfer to the electrode. It is independent of the applied potential over a finite range, and is usually evaluated by subtracting the appropriate residual current from the measured total current. A limiting current can have the character of an adsorption, catalytic, diffusion, or kinetic current, and may include a migration current.

Migration current

The difference between the current that is actually obtained, at any particular value of the potential of the indicator or working electrode, for the reduction or oxidation of an ionic electroactive substance and the current that would be obtained, at the same potential, if there were no transport of that substance due to the electric field between the electrodes. The sign convention regarding current is such that the migration current is negative for the reduction of a cation or for the oxidation of an anion, and positive for the oxidation of a cation or the reduction of an anion. Hence the migration current may tend to either increase or decrease the total current observed. In any event the migration current approaches zero as the transport number of the electroactive substance is decreased by increasing the concentration of the supporting electrolyte, and hence the conductivity.

See also

Related Research Articles

<span class="mw-page-title-main">Electrochemistry</span> Branch of chemistry

Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable chemical change, with the potential difference as an outcome of a particular chemical change, or vice versa. These reactions involve electrons moving via an electronically-conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.

<span class="mw-page-title-main">Electrolysis</span> Technique in chemistry and manufacturing

In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity".

<span class="mw-page-title-main">Redox</span> Chemical reaction in which oxidation states of atoms are changed

Redox is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state.

<span class="mw-page-title-main">Galvanic cell</span> Electrochemical device

A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous Oxidation-Reduction reactions. A common apparatus generally consists of two different metals, each immersed in separate beakers containing their respective metal ions in solution that are connected by a salt bridge or separated by a porous membrane.

<span class="mw-page-title-main">Cyclic voltammetry</span> Method of analyzing electrochemical reactions

In electrochemistry, cyclic voltammetry (CV) is a type of potentiodynamic measurement. In a cyclic voltammetry experiment, the working electrode potential is ramped linearly versus time. Unlike in linear sweep voltammetry, after the set potential is reached in a CV experiment, the working electrode's potential is ramped in the opposite direction to return to the initial potential. These cycles of ramps in potential may be repeated as many times as needed. The current at the working electrode is plotted versus the applied voltage to give the cyclic voltammogram trace. Cyclic voltammetry is generally used to study the electrochemical properties of an analyte in solution or of a molecule that is adsorbed onto the electrode.

Coulometry determines the amount of matter transformed during an electrolysis reaction by measuring the amount of electricity consumed or produced. It can be used for precision measurements of charge, and the amperes even used to have a coulometric definition. However, today coulometry is mainly used for analytical applications. Coulometry is a group of techniques in analytical chemistry. It is named after Charles-Augustin de Coulomb.

<span class="mw-page-title-main">Voltammetry</span>

Voltammetry is a category of electroanalytical methods used in analytical chemistry and various industrial processes. In voltammetry, information about an analyte is obtained by measuring the current as the potential is varied. The analytical data for a voltammetric experiment comes in the form of a voltammogram which plots the current produced by the analyte versus the potential of the working electrode.

<span class="mw-page-title-main">Chronoamperometry</span> Analytical method in electrochemistry

In electrochemistry, chronoamperometry is an analytical technique in which the electric potential of the working electrode is stepped and the resulting current from faradaic processes occurring at the electrode is monitored as a function of time. The functional relationship between current response and time is measured after applying single or double potential step to the working electrode of the electrochemical system. Limited information about the identity of the electrolyzed species can be obtained from the ratio of the peak oxidation current versus the peak reduction current. However, as with all pulsed techniques, chronoamperometry generates high charging currents, which decay exponentially with time as any RC circuit. The Faradaic current - which is due to electron transfer events and is most often the current component of interest - decays as described in the Cottrell equation. In most electrochemical cells, this decay is much slower than the charging decay-cells with no supporting electrolyte are notable exceptions. Most commonly a three-electrode system is used. Since the current is integrated over relatively longer time intervals, chronoamperometry gives a better signal-to-noise ratio in comparison to other amperometric techniques.

<span class="mw-page-title-main">Electrolysis of water</span> Electricity-induced chemical reaction

Electrolysis of water, also known as electrochemical water splitting, is the process of using electricity to decompose water into oxygen and hydrogen gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, or remixed with the oxygen to create oxyhydrogen gas, for use in welding and other applications.

<span class="mw-page-title-main">Polarography</span> Type of voltammetry

Polarography is a type of voltammetry where the working electrode is a dropping mercury electrode (DME) or a static mercury drop electrode (SMDE), which are useful for their wide cathodic ranges and renewable surfaces. It was invented in 1922 by Czech chemist Jaroslav Heyrovský, for which he won the Nobel prize in 1959. The main advantages of mercury as electrode material are as follows: 1) a large voltage window: ca. from +0.2 V to -1.8 V vs reversible hydrogen electrode (RHE). Hg electrode is particularly well-suited for studying electroreduction reactions. 2) very reproducible electrode surface, since mercury is liquid. 3) very easy cleaning of the electrode surface by making a new drop of mercury from a large Hg pool connected by a glass capillary.

<span class="mw-page-title-main">Electrodialysis</span> Applied electric potential transport of salt ions.

Electrodialysis (ED) is used to transport salt ions from one solution through ion-exchange membranes to another solution under the influence of an applied electric potential difference. This is done in a configuration called an electrodialysis cell. The cell consists of a feed (dilute) compartment and a concentrate (brine) compartment formed by an anion exchange membrane and a cation exchange membrane placed between two electrodes. In almost all practical electrodialysis processes, multiple electrodialysis cells are arranged into a configuration called an electrodialysis stack, with alternating anion and cation-exchange membranes forming the multiple electrodialysis cells. Electrodialysis processes are different from distillation techniques and other membrane based processes in that dissolved species are moved away from the feed stream, whereas other processes move away the water from the remaining substances. Because the quantity of dissolved species in the feed stream is far less than that of the fluid, electrodialysis offers the practical advantage of much higher feed recovery in many applications.

<span class="mw-page-title-main">Randles circuit</span> Equivalent circuit for an electrochemical reaction

In electrochemistry, a Randles circuit is an equivalent electrical circuit that consists of an active electrolyte resistance RS in series with the parallel combination of the double-layer capacitance Cdl and an impedance of a faradaic reaction. It is commonly used in electrochemical impedance spectroscopy (EIS) for interpretation of impedance spectra, often with a constant phase element (CPE) replacing the double layer capacity. The Randles equivalent circuit is one of the simplest possible models describing processes at the electrochemical interface. In real electrochemical systems, impedance spectra are usually more complicated and, thus, the Randles circuit may not give appropriate results.

<span class="mw-page-title-main">Double layer (surface science)</span> Molecular interface between a surface and a fluid

In surface science, a double layer is a structure that appears on the surface of an object when it is exposed to a fluid. The object might be a solid particle, a gas bubble, a liquid droplet, or a porous body. The DL refers to two parallel layers of charge surrounding the object. The first layer, the surface charge, consists of ions which are adsorbed onto the object due to chemical interactions. The second layer is composed of ions attracted to the surface charge via the Coulomb force, electrically screening the first layer. This second layer is loosely associated with the object. It is made of free ions that move in the fluid under the influence of electric attraction and thermal motion rather than being firmly anchored. It is thus called the "diffuse layer".

In electrochemistry, the Butler–Volmer equation, also known as Erdey-Grúz–Volmer equation, is one of the most fundamental relationships in electrochemical kinetics. It describes how the electrical current through an electrode depends on the voltage difference between the electrode and the bulk electrolyte for a simple, unimolecular redox reaction, considering that both a cathodic and an anodic reaction occur on the same electrode:

Bulk electrolysis is also known as potentiostatic coulometry or controlled potential coulometry. The experiment is a form of coulometry which generally employs a three electrode system controlled by a potentiostat. In the experiment the working electrode is held at a constant potential (volts) and current (amps) is monitored over time (seconds). In a properly run experiment an analyte is quantitatively converted from its original oxidation state to a new oxidation state, either reduced or oxidized. As the substrate is consumed, the current also decreases, approaching zero when the conversion nears completion.

Electrodeionization (EDI) is a water treatment technology that uses DC Power, ion exchange membranes, and ion exchange resin to deionize water. EDI is usually a polishing treatment to reverse osmosis (RO). EDI differs from other RO polishing technologies such as chemically regenerated mixed beds, in that it is continuous and requires no chemical regeneration. EDI is sometimes referred to as continuous electrodeionization (CEDI) since the electric current regenerates the resin mass continuously. The CEDI technique can achieve high purity, with product conductivity below 0.1 μS/cm and sometimes with resistivity as high as 18.2 MΩ-cm. Electrodeionization (EDI) is a combination of three different processes.

In chemistry, ion transport number, also called the transference number, is the fraction of the total electric current carried in an electrolyte by a given ionic species i:

Electrochemical kinetics is the field of electrochemistry that studies the rate of electrochemical processes. This includes the study of how process conditions, such as concentration and electric potential, influence the rate of oxidation and reduction (redox) reactions that occur at the surface of an electrode, as well as an investigation into electrochemical reaction mechanisms. Two accompanying processes are involved in the electrochemical reaction and influence the overall reaction rate:

Concentration polarization is a term used in the scientific fields of electrochemistry and membrane science.

In electrochemistry, protein film voltammetry is a technique for examining the behavior of proteins immobilized on an electrode. The technique is applicable to proteins and enzymes that engage in electron transfer reactions and it is part of the methods available to study enzyme kinetics.

References

  1. Douglas A. Skoog; F. James Holler; Stanley R. Crouch (27 January 2017). Principles of Instrumental Analysis. Cengage Learning. pp. 576–. ISBN   978-1-337-46803-9.
  2. Jack Cazes (30 November 2004). Analytical Instrumentation Handbook, Third Edition. CRC Press. pp. 534–. ISBN   978-0-8493-9039-5.
  3. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " faradaic current ". doi : 10.1351/goldbook.F02321