Feather development

Last updated

Feather development occurs in the epidermal layer of the skin in birds. It is a complicated process involving many steps. Once the feathers are fully developed, there are six different types of feathers: contour, flight, down, filoplumes, semiplumes, and bristle feathers. Feathers were not originally meant for flight. The exact reason why feathers evolved is still unknown. Birds are thought to be descendants of dinosaurs and new technology using melanosomes found in dinosaur fossils has shown that certain dinosaurs that could not fly had feathers.

Contents

Anatomy of a feather

Feathers are products of the epidermis and keratinizing system. They are non-vascular and non-nervous. They have a tubular central shaft called the rachis; coming off either side of the rachis are the veins, which have a series of barbs with interlocking connections that are called barbules. The rachis and attached veins make up the spathe. The opposite of the rachis is the calamus, which anchors the feather to the body and is moved by attached dermal muscles. There are many different types of feathers that mostly follow this basic design with few variations based on evolutionary needs. [1]

Evolution of feathers

Feathers are sometimes referred to as “elaborate reptile scales” just as birds are sometimes viewed as a subset of reptiles instead of their own category. Although this is a simplification, it originates from bird's homology with reptiles. Birds evolved from fast bipedal dinosaurs, but feathers evolved before them, and not for flying as what was originally thought. The theory of feathers evolving for flight unraveled in the 1970s when theropod dinosaurs (some common theropods were Tyrannosaurus rex and Velociraptors ) were discovered to have feathers. By looking at melanosomes, which are structures whose shape and arrangement determines how light reflects off of the pigment, in dinosaur fossils, scientists have found that dinosaurs did in fact have bold plumage. Specifically, Jakob Vinter and his colleagues analyzed the melanosomes in Anchiornis huxleyi , which they were able to reconstruct into what the plumage would have looked like 150 million years ago when A. huxleyi lived. [2]

In 1861, a group of German quarry workers found the fossil of Archaeopteryx, which had feathers like modern birds, but also teeth in its mouth, a long, bony wing, and claws on its wings like a reptile. Archaeopteryx seems to be a transitional animal from reptile to bird. However, Archaeopteryx had already rather developed feathers, which didn't help to show how the feathers had evolved in the first place. In 1996, the missing fossil to help show the evolution of feathers was found. Sinosauropteryx was covered in thin, hollow filaments that covered its back and tail. Now, after finding many dinosaurs with primitive feathers, it is believed that feathers started out as these thin, hollow filaments, and eventually evolved into the fluffy coats of feathers seen on modern birds. [3]

There are a few theories for the reasons feathers evolved in the first place, if not for flight. The first is that they served a purpose as insulation. Theropods have been found covering their nests with their forelimbs, thought to be sheltering their young. Feathers known to be found on theropods would have played an important role for insulation. Another popular theory is that quick, bipedal dinosaurs used their feathers to run faster. It's possible that the feathers assisted the dinosaurs running up inclines, and this advantage of speed eventually lead to flight. The arboreal theory suggests that animals that lived in trees found it quicker and more energy efficient to leap from tree to tree instead of running down a tree, across the ground to another tree, and back up the new tree. This leaping eventually lead to gliding, and flight. [1]

Another newer theory is that feathers were selected for sexually. [2] Their bold plumage with its patterns, coloration, and even iridescent colors were to attract the opposite sex, which is very common in modern birds today. By uncovering new technology to look and analyze well-preserved melanosomes, scientists can reconstruct what the feathers on fossilized dinosaurs would have looked like, and they look rather flamboyant.

More current theories of the original purpose/advantage of flight involve more than one of these theories in combination with each other. Ken Dial, a flight researcher at the University of Montana-Missoula, shows how chicks often use feathers to gain traction as it runs from predators up inclines, but this flapping also helps the chick steady itself as it goes down again. [2] It is very possible that feathers had multiple useful functions first, before flight.

Steps of feather development

Feathers develop from the dermal papillae. Feathers begin to form from feather follicles, which are invaginations starting in the epidermis down to the dermis. It is in the dermis that the follicle and the pulp cavity begin to form the feather. The pulp cavity is the space that contains the feather follicle. The feather filament soon grows out of the follicle; this is due to cell proliferation, which is an increased number of cells as a result cell growth and division, at the follicle base. These new cells form two different tissues. There is the sheath, which is the main feather tissues and pulp caps. The sheath is the supportive layer that surrounds the feather, which falls off as it grows. Similarly, the pulp caps, which protect the dermal core, also fall off as the feather grows. The main feather tissues later unfurl, which causes the disposal of the sheath and the pulp caps as it assumes its functional shape. As the feather grows, its spathe, which is where the rachis and vanes attach, continues to form. When spathe is finished developing, the calamus begins to form within the base of the spathe. The calamus is the quill of the feather, which is the bottom portion that stays mainly within the pulp cavity. From there, the feather is fully developed and will remain as such until molting occurs, causing it to fall off. Feathers fall off during molting, which occurs at different times through the year depending on the type of bird. Birds can molt for seasonal, reproductive and many other reasons.

Types of feathers

There are six different types of feathers, which are flight, contour, down, semiplumes, filoplumes, and bristle feathers. [4] [5] [6]

Pennaceous feathers

Pennaceous feathers are relatively stiff and flat; the flight and contour feathers are of this kind. They have stiff barbs branching from the main trunk of the feather (the rachis). These barbs in turn have barbules branching off of them, the barbules have hooklets spaced evenly along their length and hook together to form a stable smooth surface.

Flight feathers can be broken down into wing and tail feathers, remiges and retrices respectively.

The wing feathers can in turn be broken down into further types (primary, secondary and tertiary). In general, they are long and asymmetrical with a thin leading edge allowing for strong stable feathers during flight. Flight feathers are connected to the bone with ligaments allowing them to be moved with precision and ensuring they remain tightly attached to the bird. The primaries are at the far (wrist) end of the wing and provide forward thrust during takeoff and flight. The secondaries are in the middle of the wing and attach to the ulna and form an airfoil which provides lift. The tertiaries are located closest to the body.

The tail feathers are used to control flight acting as rudder and brake, only some of these feathers are as firmly attached as the bird's primaries.

Contour feathers are arranged on the body of the bird in the manner of roof tiles. The tips of these feathers are waterproof and help protect the bird from the elements, while the inner parts of the feather near the bird's body are more downy. Wing contour feathers (known as coverts) help with the aerodynamics of the wing by covering where the flight feathers attach to the bone.

Plumulaceous feathers

Plumulaceous feathers, otherwise known as downy feathers, lack barbules and hooklets. Normally, they are fluffy and used for insulation. There are special types of down feathers that, when disintegrated, can form keratin powder, which can be used to waterproof feathers. Birds can use this ability for a variety of reasons, but the main reason is for insulation against cold and/or water, especially for the birds that dive into or sit on water. There are four kinds of these feathers.

Semiplumes are usually not visible as they are hidden by the contour feathers. Their appearance is that of a loose downy, but stiff feather. They consist of a rachis, barbs and barbules, however they do not have hooklets. Their purpose is insulation and aerodynamics. Down is similar to semiplume, however they have a very short or missing rachis.

Filoplumes are thin, hair-like feathers with a long rachis and very few barbs near the tip. They are located next to other feathers and, while their function is not fully understood, they are thought to serve a sensory function allowing the bird to react to the positioning of its contour and flight feathers.

Bristle feathers have a stiff rachis with a few barbs near the base. They are located around the eyes and mouth; it is believed that they have a protective and sensory function.


Not all birds that have feathers use them for flight. Penguins use them for insulation against the cold of the air and water. Whereas, the ostrich utilizes its feathers for mating and for fluffing, which allows them to release heat and cool down.


Related Research Articles

<i>Archaeopteryx</i> Genus of early bird-like dinosaur

Archaeopteryx, sometimes referred to by its German name, "Urvogel", is a genus of avian dinosaurs. The name derives from the ancient Greek ἀρχαῖος (archaīos), meaning "ancient", and πτέρυξ (ptéryx), meaning "feather" or "wing". Between the late 19th century and the early 21st century, Archaeopteryx was generally accepted by palaeontologists and popular reference books as the oldest known bird. Older potential avialans have since been identified, including Anchiornis, Xiaotingia, and Aurornis.

<span class="mw-page-title-main">Feather</span> Body-covering structure of birds

Feathers are epidermal growths that form a distinctive outer covering, or plumage, on both avian (bird) and some non-avian dinosaurs and other archosaurs. They are the most complex integumentary structures found in vertebrates and a premier example of a complex evolutionary novelty. They are among the characteristics that distinguish the extant birds from other living groups.

<span class="mw-page-title-main">Pin feather</span> Developing bird feather that has bloodflow

A pin feather is a developing feather on a bird. This feather can grow as a new feather during the bird's infancy, or grow to replace one from moulting.

<i>Sinosauropteryx</i> Extinct genus of dinosaurs

Sinosauropteryx is a compsognathid dinosaur. Described in 1996, it was the first dinosaur taxon outside of Avialae to be found with evidence of feathers. It was covered with a coat of very simple filament-like feathers. Structures that indicate colouration have also been preserved in some of its feathers, which makes Sinosauropteryx the first non-avialian dinosaurs where colouration has been determined. The colouration includes a reddish and light banded tail. Some contention has arisen with an alternative interpretation of the filamentous impression as remains of collagen fibres, but this has not been widely accepted.

<i>Microraptor</i> Extinct genus of dinosaurs

Microraptor is a genus of small, four-winged dromaeosaurid dinosaurs. Numerous well-preserved fossil specimens have been recovered from Liaoning, China. They date from the early Cretaceous Jiufotang Formation, 125 to 120 million years ago. Three species have been named, though further study has suggested that all of them represent variation in a single species, which is properly called M. zhaoianus. Cryptovolans, initially described as another four-winged dinosaur, is usually considered to be a synonym of Microraptor.

<i>Confuciusornis</i> Extinct genus of birds

Confuciusornis is a genus of basal crow-sized avialan from the Early Cretaceous Period of the Yixian and Jiufotang Formations of China, dating from 125 to 120 million years ago. Like modern birds, Confuciusornis had a toothless beak, but closer and later relatives of modern birds such as Hesperornis and Ichthyornis were toothed, indicating that the loss of teeth occurred convergently in Confuciusornis and living birds. It was thought to be the oldest known bird to have a beak, though this title now belongs to an earlier relative Eoconfuciusornis. It was named after the Chinese moral philosopher Confucius. Confuciusornis is one of the most abundant vertebrates found in the Yixian Formation, and several hundred complete specimens have been found.

<span class="mw-page-title-main">Down feather</span> Soft, fine feather, sometimes under larger feathers

The down of birds is a layer of fine feathers found under the tougher exterior feathers. Very young birds are clad only in down. Powder down is a specialized type of down found only in a few groups of birds. Down is a fine thermal insulator and padding, used in goods such as jackets, bedding, pillows and sleeping bags. The discovery of feathers trapped in ancient amber suggests that some species of non-avian dinosaur likely possessed down-like feathers.

<span class="mw-page-title-main">Pennaceous feather</span> Non-downy feather with vanes composed of many interlocking barbules

The pennaceous feather is a type of feather present in most modern birds and in some other species of maniraptoriform dinosaurs.

<span class="mw-page-title-main">Feathered dinosaur</span> Dinosaur having feathers

A feathered dinosaur is any species of dinosaur possessing feathers. That includes all species of birds, but there is a hypothesis that many, if not all non-avian dinosaur species also possessed feathers in some shape or form. That theory has been challenged by some research.

<i>Sinornithosaurus</i> Extinct genus of dinosaurs

Sinornithosaurus is a genus of feathered dromaeosaurid dinosaur from the early Cretaceous Period of the Yixian Formation in what is now China. It was the fifth non–avian feathered dinosaur genus discovered by 1999. The original specimen was collected from the Sihetun locality of western Liaoning. It was found in the Jianshangou beds of the Yixian Formation, dated to 124.5 million years ago. Additional specimens have been found in the younger Dawangzhangzi bed, dating to around 122 million years ago.

<span class="mw-page-title-main">Bird flight</span> Locomotion

Bird flight is the primary mode of locomotion used by most bird species in which birds take off and fly. Flight assists birds with feeding, breeding, avoiding predators, and migrating.

<i>Longisquama</i> Extinct genus of reptiles

Longisquama is a genus of extinct reptile. There is only one species, Longisquama insignis, known from a poorly preserved skeleton and several incomplete fossil impressions from the Middle to Late Triassic Madygen Formation in Kyrgyzstan. It is known from the type fossil specimen, slab and counterslab and five referred specimens of possible integumentary appendages. All specimens are in the collection of the Paleontological Institute of the Russian Academy of Sciences in Moscow.

<span class="mw-page-title-main">Odontognathae</span>

Odontognathae is a disused name for a paraphyletic group of toothed prehistoric birds. The group was originally proposed by Alexander Wetmore, who attempted to link fossil birds with the presence of teeth, specifically of the orders Hesperornithiformes and Ichthyornithiformes. As such they would be regarded as transitional fossils between the reptile-like "Archaeornithes" like Archaeopteryx and modern birds. They were described by Romer as birds with essentially modern anatomy, but retaining teeth.

<span class="mw-page-title-main">Origin of birds</span> Evolution, adaptation, and origin of birds

The scientific question of within which larger group of animals birds evolved has traditionally been called the "origin of birds". The present scientific consensus is that birds are a group of maniraptoran theropod dinosaurs that originated during the Mesozoic Era.

<i>Anchiornis</i> Extinct genus of birds

Anchiornis is a genus of small, four-winged paravian dinosaurs, with only one known species, the type species Anchiornis huxleyi, named for its similarity to modern birds. The Latin name Anchiornis derives from a Greek word meaning "near bird", and huxleyi refers to Thomas Henry Huxley, a contemporary of Charles Darwin.

Praeornis is a dubious genus of early avialan or bird-like dinosaur, named on the basis of a single feather discovered in the Karabastau Formation of Kazakhstan by Sharov in 1971. A second specimen was discovered in 2010 by Dzik et al. The feathers of Praeornis likely represent modified tail feathers used for display or balance, similar to those found in some other early avialans. The feathers of Praeornis are unique thanks to their extremely thick central quill (rachis) and stiffened barbs.

<i>The Origin of Birds</i> Book by Gerhard Heilmann

The Origin of Birds is an early synopsis of bird evolution written in 1926 by Gerhard Heilmann, a Danish artist and amateur zoologist. The book was born from a series of articles published between 1913 and 1916 in Danish, and although republished as a book it received mainly criticism from established scientists and got little attention within Denmark. The English edition of 1926, however, became highly influential at the time due to the breadth of evidence synthesized as well as the artwork used to support its arguments. It was considered the last word on the subject of bird evolution for several decades after its publication.

<span class="mw-page-title-main">Glossary of bird terms</span> Glossary of common English language terms used in the description of birds

The following is a glossary of common English language terms used in the description of birds—warm-blooded vertebrates of the class Aves and the only living dinosaurs, characterized by feathers, the ability to fly in all but the approximately 60 extant species of flightless birds, toothless, beakedjaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart and a strong yet lightweight skeleton.

<i>Cruralispennia</i> Extinct genus of birds

Cruralispennia is an extinct genus of enantiornithean bird. The only known specimen of Cruralispennia was discovered in the Early Cretaceous Huajiying Formation of China and formally described in 2017. The type species of Cruralispennia is Cruralispennia multidonta. The generic name is Latin for "shin feather", while the specific name means "many-toothed". The holotype of Cruralispennia is IVPP 21711, a semi-articulated partial skeleton surrounded by the remains of carbonized feathers.

<i>Caihong</i> Extinct genus of birds

Caihong is a genus of small paravian theropod dinosaur from China that lived during the Late Jurassic period.

References

  1. 1 2 Kardong, Kenneth (2014). Vertebrates: Comparative Anatomy, Function, and Evolution. McGraw-Hill Education. ISBN   978-0078023026.
  2. 1 2 3 Zimmer, Carl (2013). The Tangled Bank. Roberts and Company. ISBN   978-1936221448.
  3. Xu, Xing (2008). "A new feather type in a nonavian theropod and the early evolution of feathers" (PDF). PNAS. 106 (3): 832–4. doi: 10.1073/pnas.0810055106 . PMC   2630069 . PMID   19139401.
  4. "Bird Feather Types, Anatomy, Molting, Growth, and Color". www.peteducation.com. Archived from the original on 2017-02-09. Retrieved 2016-12-01.
  5. "Everything You Need To Know About Feathers". www.allaboutbirds.org. Retrieved 2023-07-27.
  6. "Types of Bird Feathers". www.paulnoll.com. Retrieved 2023-07-27.