Filar micrometer

Last updated
A filar micrometer attached to a telescope Ladd Observatory micrometer.tiff
A filar micrometer attached to a telescope

A filar micrometer is a specialized eyepiece used in astronomical telescopes for astrometry measurements, in microscopes for specimen measurements, and in alignment and surveying telescopes for measuring angles and distances on nearby objects. "Filar" derives from the Latin filum ("thread"). It refers to the fine threads or wires used in the device.

Contents

Construction and use

Filar micrometer Lille - observatoire - 5.jpg
Filar micrometer

A typical filar micrometer consists of a reticle that has two fine parallel wires or threads that can be moved by the observer using a micrometer screw mechanism. The wires are placed in the focal image plane of the eyepiece so they remain sharply superimposed over the object under observation, while the micrometer motion moves the wires across the focal plane. Other designs employ a fixed reticle, against which one wire or a second reticle moves. By rotating the eyepiece assembly in the eyetube, the measurement axis can be aligned to match the orientation of the two points of observation.

At one time, it was common to use spider silk as a thread. [1]

By placing one wire over one point of interest and moving the other to a second point, the distance between the two wires can be measured with the micrometer portion of the instrument. Given this precise distance measurement at the image plane, a trigonometric calculation with the objective focal length yields the angular distance between the two points seen in a telescope. In a microscope, a similar calculation yields the spatial distance between two points on a specimen.

In an alignment telescope, the precise micrometric measurement of the eyepiece image directly indicates the real distance of a nearby observed point from the line of sight. This absolute measurement is independent of the distance to the object, due to the telecentricity principle.

A common use of filar micrometers in astronomical telescopes was measuring the distance between double stars.

Filar micrometers are little used in modern astronomy, having been replaced by digital photographic techniques where digital pixels provide a precise reference for image distance. Filar eyepieces are still used in teaching astronomy and by some amateur astronomers.

Prior devices

The precursor to the filar micrometer was the micrometer eyepiece, invented by William Gascoigne.

Earlier measures of angular distances relied on inserting into the eyepiece a thin metal sheet cut in the shape of a narrow, isosceles triangle. The sheet was pushed into the eyepiece until the two adjacent edges of the metal sheet simultaneously occulted the two objects of interest. By carefully measuring the position where the objects were extinguished and knowing the focal length of the objective lens, the angular distance could be calculated. Christiaan Huygens used such a device.

See also

Notes

  1. Berenbaum, May R., Field Notes — Spin Control, The Sciences, The New York Academy Of Sciences, September/October 1995

Related Research Articles

<span class="mw-page-title-main">Parallax</span> Difference in the apparent position of an object viewed along two different lines of sight

Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight and is measured by the angle or half-angle of inclination between those two lines. Due to foreshortening, nearby objects show a larger parallax than farther objects, so parallax can be used to determine distances.

<span class="mw-page-title-main">Micrometer (device)</span> Tool for the precise measurement of a components length, width, and/or depth

A micrometer, sometimes known as a micrometer screw gauge, is a device incorporating a calibrated screw widely used for accurate measurement of components in mechanical engineering and machining as well as most mechanical trades, along with other metrological instruments such as dial, vernier, and digital calipers. Micrometers are usually, but not always, in the form of calipers. The spindle is a very accurately machined screw and the object to be measured is placed between the spindle and the anvil. The spindle is moved by turning the ratchet knob or thimble until the object to be measured is lightly touched by both the spindle and the anvil.

<span class="mw-page-title-main">Optical microscope</span> Microscope that uses visible light

The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century. Basic optical microscopes can be very simple, although many complex designs aim to improve resolution and sample contrast.

<span class="mw-page-title-main">Astrophotography</span> Imaging of astronomical objects

Astrophotography, also known as astronomical imaging, is the photography or imaging of astronomical objects, celestial events, or areas of the night sky. The first photograph of an astronomical object was taken in 1840, but it was not until the late 19th century that advances in technology allowed for detailed stellar photography. Besides being able to record the details of extended objects such as the Moon, Sun, and planets, modern astrophotography has the ability to image objects outside of the visible spectrum of the human eye such as dim stars, nebulae, and galaxies. This is accomplished through long time exposure as both film and digital cameras can accumulate and sum photons over long periods of time or using specialized optical filters which limit the photons to a certain wavelength.

<span class="mw-page-title-main">Spotting scope</span> Compact high-power telescope

A spotting scope is a compact lightweight portable telescope optimized for detailed observation of distant objects. They are used as tripod mounted optical enhancement devices for various outdoor activities such as birdwatching, skygazing and other naturalist activities, for hunting and target shooting to verify a marksman's shot placements, for tactical ranging and surveillance, and for any other application that requires higher magnification than ordinary binoculars.

<span class="mw-page-title-main">Angular resolution</span> Ability of any image-forming device to distinguish small details of an object

Angular resolution describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution. It is used in optics applied to light waves, in antenna theory applied to radio waves, and in acoustics applied to sound waves. The colloquial use of the term "resolution" sometimes causes confusion; when an optical system is said to have a high resolution or high angular resolution, it means that the perceived distance, or actual angular distance, between resolved neighboring objects is small. The value that quantifies this property, θ, which is given by the Rayleigh criterion, is low for a system with a high resolution. The closely related term spatial resolution refers to the precision of a measurement with respect to space, which is directly connected to angular resolution in imaging instruments. The Rayleigh criterion shows that the minimum angular spread that can be resolved by an image forming system is limited by diffraction to the ratio of the wavelength of the waves to the aperture width. For this reason, high resolution imaging systems such as astronomical telescopes, long distance telephoto camera lenses and radio telescopes have large apertures.

<span class="mw-page-title-main">Refracting telescope</span> Type of optical telescope

A refracting telescope is a type of optical telescope that uses a lens as its objective to form an image. The refracting telescope design was originally used in spyglasses and astronomical telescopes but is also used for long-focus camera lenses. Although large refracting telescopes were very popular in the second half of the 19th century, for most research purposes, the refracting telescope has been superseded by the reflecting telescope, which allows larger apertures. A refractor's magnification is calculated by dividing the focal length of the objective lens by that of the eyepiece.

<span class="mw-page-title-main">Optical telescope</span> Telescope for observations with visible light

An optical telescope is a telescope that gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through electronic image sensors.

<span class="mw-page-title-main">Objective (optics)</span> Lens or mirror in optical instruments

In optical engineering, an objective is an optical element that gathers light from an object being observed and focuses the light rays from it to produce a real image of the object. Objectives can be a single lens or mirror, or combinations of several optical elements. They are used in microscopes, binoculars, telescopes, cameras, slide projectors, CD players and many other optical instruments. Objectives are also called object lenses, object glasses, or objective glasses.

<span class="mw-page-title-main">Magnification</span> Process of enlarging the apparent size of something

Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a size ratio called optical magnification. When this number is less than one, it refers to a reduction in size, sometimes called de-magnification.

<span class="mw-page-title-main">Reticle</span> Aim markings in optical devices, e.g. crosshairs

A reticle, or reticule also known as a graticule, is a pattern of fine lines or markings built into the eyepiece of an optical device such as a telescopic sight, spotting scope, theodolite, optical microscope or the screen of an oscilloscope, to provide measurement references during visual inspections. Today, engraved lines or embedded fibers may be replaced by a digital image superimposed on a screen or eyepiece. Both terms may be used to describe any set of patterns used for aiding visual measurements and calibrations, but in modern use reticle is most commonly used for weapon sights, while graticule is more widely used for non-weapon measuring instruments such as oscilloscope display, astronomic telescopes, microscopes and slides, surveying instruments and other similar devices.

<span class="mw-page-title-main">Eyepiece</span> Type of lens attached to a variety of optical devices such as telescopes and microscopes

An eyepiece, or ocular lens, is a type of lens that is attached to a variety of optical devices such as telescopes and microscopes. It is named because it is usually the lens that is closest to the eye when someone looks through an optical device to observe an object or sample. The objective lens or mirror collects light from an object or sample and brings it to focus creating an image of the object. The eyepiece is placed near the focal point of the objective to magnify this image to the eyes. The amount of magnification depends on the focal length of the eyepiece.

<span class="mw-page-title-main">Telescopic sight</span> Sighting device for firearms

A telescopic sight, commonly called a scope informally, is an optical sighting device based on a refracting telescope. It is equipped with some form of a referencing pattern – known as a reticle – mounted in a focally appropriate position in its optical system to provide an accurate point of aim. Telescopic sights are used with all types of systems that require magnification in addition to reliable visual aiming, as opposed to non-magnifying iron sights, reflector (reflex) sights, holographic sights or laser sights, and are most commonly found on long-barrel firearms, particularly rifles, usually via a scope mount. Similar devices are also found on other platforms such as Artillery, Tanks and even Aircraft. The optical components may be combined with optoelectronics to add night vision or smart device features.

<span class="mw-page-title-main">Exit pupil</span>

In optics, the exit pupil is a virtual aperture in an optical system. Only rays which pass through this virtual aperture can exit the system. The exit pupil is the image of the aperture stop in the optics that follow it. In a telescope or compound microscope, this image is the image of the objective element(s) as produced by the eyepiece. The size and shape of this disc is crucial to the instrument's performance, because the observer's eye can see light only if it passes through the aperture. The term exit pupil is also sometimes used to refer to the diameter of the virtual aperture. Older literature on optics sometimes refers to the exit pupil as the Ramsden disc, named after English instrument-maker Jesse Ramsden.

<span class="mw-page-title-main">Heliometer</span> Astronomical measuring instrument

A heliometer is an instrument originally designed for measuring the variation of the Sun's diameter at different seasons of the year, but applied now to the modern form of the instrument which is capable of much wider use.

<span class="mw-page-title-main">Stadiametric rangefinding</span>

Stadiametric rangefinding, or the stadia method, is a technique of measuring distances with a telescopic instrument. The term stadia comes from a Greek unit of length Stadion which was the typical length of a sports stadium of the time. Stadiametric rangefinding is used for surveying and in the telescopic sights of firearms, artillery pieces, or tank guns, as well as some binoculars and other optics. It is still widely used in long-range military sniping, but in many professional applications it is being replaced with microwave, infrared, or laser rangefinding methods. Although much easier to use, electronic rangefinders can give away the shooter's position to a well-equipped adversary, and the need for accurate range estimation has existed for much longer than electronic rangefinders small and rugged enough to be suitable for military use.

<span class="mw-page-title-main">Meridian circle</span> Astronomical instrument for timing of the passage of stars

The meridian circle is an instrument for timing of the passage of stars across the local meridian, an event known as a culmination, while at the same time measuring their angular distance from the nadir. These are special purpose telescopes mounted so as to allow pointing only in the meridian, the great circle through the north point of the horizon, the north celestial pole, the zenith, the south point of the horizon, the south celestial pole, and the nadir. Meridian telescopes rely on the rotation of the sky to bring objects into their field of view and are mounted on a fixed, horizontal, east–west axis.

Polar alignment is the act of aligning the rotational axis of a telescope's equatorial mount or a sundial's gnomon with a celestial pole to parallel Earth's axis.

<span class="mw-page-title-main">Transit instrument</span> Small telescope used for precise astrometry

In astronomy, a transit instrument is a small telescope with extremely precisely graduated mount used for the precise observation of star positions. They were previously widely used in astronomical observatories and naval observatories to measure star positions in order to compile nautical almanacs for use by mariners for celestial navigation, and observe star transits to set extremely accurate clocks which were used to set marine chronometers carried on ships to determine longitude, and as primary time standards before atomic clocks. The instruments can be divided into three groups: meridian, zenith, and universal instruments.

<span class="mw-page-title-main">Afocal photography</span> Method of photography

Afocal photography, also called afocal imaging or afocal projection is a method of photography where the camera with its lens attached is mounted over the eyepiece of another image forming system such as an optical telescope or optical microscope, with the camera lens taking the place of the human eye.

References