Fitch's paradox of knowability

Last updated

Fitch's paradox of knowability is one of the fundamental puzzles of epistemic logic. It provides a challenge to the knowability thesis, which states that every truth is, in principle, knowable. The paradox is that this assumption implies the omniscience principle, which asserts that every truth is known. Essentially, Fitch's paradox asserts that the existence of an unknown truth is unknowable. So if all truths were knowable, it would follow that all truths are in fact known.

Contents

The paradox is of concern for verificationist or anti-realist accounts of truth, for which the knowability thesis is very plausible, [1] but the omniscience principle is very implausible.

The paradox appeared as a minor theorem in a 1963 paper by Frederic Fitch, "A Logical Analysis of Some Value Concepts". Other than the knowability thesis, his proof makes only modest assumptions on the modal nature of knowledge and of possibility. He also generalised the proof to different modalities. It resurfaced in 1979 when W. D. Hart wrote that Fitch's proof was an "unjustly neglected logical gem".

Proof

Suppose p is a sentence that is an unknown truth; that is, the sentence p is true, but it is not known that p is true. In such a case, the sentence "the sentence p is an unknown truth" is true; and, if all truths are knowable, it should be possible to know that "p is an unknown truth". But this isn't possible, because as soon as we know "p is an unknown truth", we know that p is true, rendering p no longer an unknown truth, so the statement "p is an unknown truth" becomes a falsity. Hence, the statement "p is an unknown truth" cannot be both known and true at the same time. Therefore, if all truths are knowable, the set of "all truths" must not include any of the form "something is an unknown truth"; thus there must be no unknown truths, and thus all truths must be known.

This can be formalised with modal logic. K and L will stand for known and possible, respectively. Thus LK means possibly known, in other words, knowable. The modality rules used are:

(A)Kpp– knowledge implies truth.
(B)K(p & q) → (Kp & Kq)– knowing a conjunction implies knowing each conjunct.
(C)pLKp– all truths are knowable.
(D)from ¬p, deduce ¬Lp– if p can be proven false without assumptions, then p is impossible (which is equivalent to the rule of necessitation: if q=¬p can be proven true without assumptions (a tautology), then q is necessarily true, therefore p is impossible).

The proof proceeds:

1. Suppose K(p & ¬Kp)
2. Kp & K¬Kpfrom line 1 by rule (B)
3. Kpfrom line 2 by conjunction elimination
4. K¬Kpfrom line 2 by conjunction elimination
5. ¬Kpfrom line 4 by rule (A)
6. ¬K(p & ¬Kp)from lines 3 and 5 by reductio ad absurdum, discharging assumption 1
7. ¬LK(p & ¬Kp)from line 6 by rule (D)
8. Suppose p & ¬Kp
9. LK(p & ¬Kp)from line 8 by rule (C)
10. ¬(p & ¬Kp)from lines 7 and 9 by reductio ad absurdum, discharging assumption 8.
11. pKpfrom line 10 by a classical tautology about the material conditional (negated conditionals)

The last line states that if p is true then it is known. Since nothing else about p was assumed, it means that every truth is known.

Since the above proof uses minimal assumptions about the nature of L, replacing L with F (see Prior's tense logic (TL)) provides the proof for "If all truth can be known in the future, then they are already known right now".

Generalisations

The proof uses minimal assumptions about the nature of K and L, so other modalities can be substituted for "known". Joe Salerno gives the example of "caused by God": rule (C) becomes that every true fact could have been caused by God, and the conclusion is that every true fact was caused by God. Rule (A) can also be weakened to include modalities that don't imply truth. For instance instead of "known" we could have the doxastic modality "believed by a rational person" (represented by B). Rule (A) is replaced with:

(E)BpBBp– rational belief is transparent; if p is rationally believed, then it is rationally believed that p is rationally believed.
(F)¬(Bp & B¬p)– rational beliefs are consistent

This time the proof proceeds:

1. Suppose B(p & ¬Bp)
2. Bp & B¬Bpfrom line 1 by rule (B)
3. Bpfrom line 2 by conjunction elimination
4. BBpfrom line 3 by rule (E)
5. B¬Bpfrom line 2 by conjunction elimination
6. BBp & B¬Bpfrom lines 4 and 5 by conjunction introduction
7. ¬(BBp & B¬Bp)by rule (F)
8. ¬B(p & ¬Bp)from lines 6 and 7 by reductio ad absurdum, discharging assumption 1

The last line matches line 6 in the previous proof, and the remainder goes as before. So if any true sentence could possibly be believed by a rational person, then that sentence is believed by one or more rational persons.

Some anti-realists advocate the use of intuitionistic logic; however, except for the last line, which moves from there are no unknown truths to all truths are known, the proof is, in fact, intuitionistically valid.

The knowability thesis

Rule (C) is generally held to be at fault rather than any of the other logical principles employed. It may be contended that this rule does not faithfully translate the idea that all truths are knowable, and that rule (C) should not apply unrestrictedly. Kvanvig contends that this represents an illicit substitution into a modal context.

Gödel's Theorem proves that in any recursively axiomatized system sufficient to derive mathematics (e.g. Peano Arithmetic), there are statements which are undecidable. In that context, it is difficult to state that "all truths are knowable" since some potential truths are uncertain.

However, jettisoning the knowability thesis does not necessarily solve the paradox, since one can substitute a weaker version of the knowability thesis called (C').

(C')x(((x & ¬Kx) & LKx) & LK((x & ¬Kx) & LKx))– There is an unknown, but knowable truth, and it is knowable that it is an unknown, but knowable truth.

The same argument shows that (C') results in contradiction, indicating that any knowable truth is either known, or it is unknowable that it is an unknown yet knowable truth; conversely, it states that if a truth is unknown, then it is unknowable, or it is unknowable that it is knowable yet unknown.

See also

Notes

  1. Müller, Vincent C. W.; Stein, Christian (1996). Epistemic theories of truth: The justifiability paradox investigated. Universidade de Santiago de Compostela. pp. 95–104.

Related Research Articles

In logic, the law of excluded middle states that for every proposition, either this proposition or its negation is true. It is one of the so-called three laws of thought, along with the law of noncontradiction, and the law of identity. However, no system of logic is built on just these laws, and none of these laws provides inference rules, such as modus ponens or De Morgan's laws.

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

In the philosophy of mathematics, intuitionism, or neointuitionism, is an approach where mathematics is considered to be purely the result of the constructive mental activity of humans rather than the discovery of fundamental principles claimed to exist in an objective reality. That is, logic and mathematics are not considered analytic activities wherein deep properties of objective reality are revealed and applied, but are instead considered the application of internally consistent methods used to realize more complex mental constructs, regardless of their possible independent existence in an objective reality.

Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.

The unexpected hanging paradox or surprise test paradox is a paradox about a person's expectations about the timing of a future event which they are told will occur at an unexpected time. The paradox is variously applied to a prisoner's hanging or a surprise school test. It was first introduced to the public in Martin Gardner's March 1963 Mathematical Games column in Scientific American magazine.

<span class="mw-page-title-main">Saul Kripke</span> American philosopher and logician (1940–2022)

Saul Aaron Kripke was an American analytic philosopher and logician. He was Distinguished Professor of Philosophy at the Graduate Center of the City University of New York and emeritus professor at Princeton University. Kripke is considered one of the most important philosophers of the latter half of the 20th century. Since the 1960s, he has been a central figure in a number of fields related to mathematical and modal logic, philosophy of language and mathematics, metaphysics, epistemology, and recursion theory.

In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning.

<span class="mw-page-title-main">History of logic</span>

The history of logic deals with the study of the development of the science of valid inference (logic). Formal logics developed in ancient times in India, China, and Greece. Greek methods, particularly Aristotelian logic as found in the Organon, found wide application and acceptance in Western science and mathematics for millennia. The Stoics, especially Chrysippus, began the development of predicate logic.

Proof theory is a major branch of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.

In logic, a three-valued logic is any of several many-valued logic systems in which there are three truth values indicating true, false and some third value. This is contrasted with the more commonly known bivalent logics which provide only for true and false.

Understood in a narrow sense, philosophical logic is the area of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. Some theorists conceive philosophical logic in a wider sense as the study of the scope and nature of logic in general. In this sense, philosophical logic can be seen as identical to the philosophy of logic, which includes additional topics like how to define logic or a discussion of the fundamental concepts of logic. The current article treats philosophical logic in the narrow sense, in which it forms one field of inquiry within the philosophy of logic.

Modal logic is a kind of logic used to represent statements about necessity and possibility. It plays a major role in philosophy and related fields as a tool for understanding concepts such as knowledge, obligation, and causation. For instance, in epistemic modal logic, the formula can be used to represent the statement that is known. In deontic modal logic, that same formula can represent that is a moral obligation. Modal logic considers the inferences that modal statements give rise to. For instance, most epistemic logics treat the formula as a tautology, representing the principle that only true statements can count as knowledge.

A paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic which reject the principle of explosion.

In classical logic, intuitionistic logic and similar logical systems, the principle of explosion, or the principle of Pseudo-Scotus, is the law according to which any statement can be proven from a contradiction. That is, from a contradiction, any proposition can be inferred from it; this is known as deductive explosion.

Epistemic modal logic is a subfield of modal logic that is concerned with reasoning about knowledge. While epistemology has a long philosophical tradition dating back to Ancient Greece, epistemic logic is a much more recent development with applications in many fields, including philosophy, theoretical computer science, artificial intelligence, economics and linguistics. While philosophers since Aristotle have discussed modal logic, and Medieval philosophers such as Avicenna, Ockham, and Duns Scotus developed many of their observations, it was C. I. Lewis who created the first symbolic and systematic approach to the topic, in 1912. It continued to mature as a field, reaching its modern form in 1963 with the work of Kripke.

Logic is the formal science of using reason and is considered a branch of both philosophy and mathematics and to a lesser extent computer science. Logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and the study of arguments in natural language. The scope of logic can therefore be very large, ranging from core topics such as the study of fallacies and paradoxes, to specialized analyses of reasoning such as probability, correct reasoning, and arguments involving causality. One of the aims of logic is to identify the correct and incorrect inferences. Logicians study the criteria for the evaluation of arguments.

Epistemology or theory of knowledge is the branch of philosophy concerned with the nature and scope (limitations) of knowledge. It addresses the questions "What is knowledge?", "How is knowledge acquired?", "What do people know?", "How do we know what we know?", and "Why do we know what we know?". Much of the debate in this field has focused on analyzing the nature of knowledge and how it relates to similar notions such as truth, belief, and justification. It also deals with the means of production of knowledge, as well as skepticism about different knowledge claims.

<span class="mw-page-title-main">Logic</span> Study of correct reasoning

Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics.

The knower paradox is a paradox belonging to the family of the paradoxes of self-reference. Informally, it consists in considering a sentence saying of itself that it is not known, and apparently deriving the contradiction that such sentence is both not known and known.

References