Flat (geometry)

Last updated

In geometry, a flat or affine subspace is a subset of an affine space that is itself an affine space (of equal or lower dimension). In the case the parent space is Euclidean, a flat is a Euclidean subspace which inherits the notion of distance from its parent space.

Contents

The flats in a plane (two-dimensional space) are points, lines, and the plane itself; the flats in three-dimensional space are points, lines, planes, and the space itself. In an n-dimensional space, there are k-flats of every dimension k from 0 to n; subspaces one dimension lower than the parent space, (n1)-flats, are called hyperplanes .

Flats occur in linear algebra, as geometric realizations of solution sets of systems of linear equations.

A flat is a manifold and an algebraic variety, and is sometimes called a linear manifold or linear variety to distinguish it from other manifolds or varieties.

Descriptions

By equations

A flat can be described by a system of linear equations. For example, a line in two-dimensional space can be described by a single linear equation involving x and y:

In three-dimensional space, a single linear equation involving x, y, and z defines a plane, while a pair of linear equations can be used to describe a line. In general, a linear equation in n variables describes a hyperplane, and a system of linear equations describes the intersection of those hyperplanes. Assuming the equations are consistent and linearly independent, a system of k equations describes a flat of dimension nk.

Parametric

A flat can also be described by a system of linear parametric equations. A line can be described by equations involving one parameter:

while the description of a plane would require two parameters:

In general, a parameterization of a flat of dimension k would require parameters t1, …, tk.

Operations and relations on flats

Intersecting, parallel, and skew flats

An intersection of flats is either a flat or the empty set.

If each line from one flat is parallel to some line from another flat, then these two flats are parallel. Two parallel flats of the same dimension either coincide or do not intersect; they can be described by two systems of linear equations which differ only in their right-hand sides.

If flats do not intersect, and no line from the first flat is parallel to a line from the second flat, then these are skew flats. It is possible only if sum of their dimensions is less than dimension of the ambient space.

Join

For two flats of dimensions k1 and k2 there exists the minimal flat which contains them, of dimension at most k1 + k2 + 1. If two flats intersect, then the dimension of the containing flat equals to k1 + k2 minus the dimension of the intersection.

Properties of operations

These two operations (referred to as meet and join) make the set of all flats in the Euclidean n-space a lattice and can build systematic coordinates for flats in any dimension, leading to Grassmann coordinates or dual Grassmann coordinates. For example, a line in three-dimensional space is determined by two distinct points or by two distinct planes.

However, the lattice of all flats is not a distributive lattice. If two lines 1 and 2 intersect, then 1 ∩ ℓ2 is a point. If p is a point not lying on the same plane, then (ℓ1 ∩ ℓ2) + p = (ℓ1 + p) ∩ (ℓ2 + p), both representing a line. But when 1 and 2 are parallel, this distributivity fails, giving p on the left-hand side and a third parallel line on the right-hand side.

Euclidean geometry

The aforementioned facts do not depend on the structure being that of Euclidean space (namely, involving Euclidean distance) and are correct in any affine space. In a Euclidean space:

See also

Notes

    Related Research Articles

    <span class="mw-page-title-main">Euclidean space</span> Fundamental space of geometry

    Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension n, which are called Euclidean n-spaces when one wants to specify their dimension. For n equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics.

    <span class="mw-page-title-main">Projective plane</span> Geometric concept of a 2D space with a "point at infinity" adjoined

    In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect at a single point, but there are some pairs of lines that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus any two distinct lines in a projective plane intersect at exactly one point.

    <span class="mw-page-title-main">Affine transformation</span> Geometric transformation that preserves lines but not angles nor the origin

    In Euclidean geometry, an affine transformation or affinity is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles.

    <span class="mw-page-title-main">Euclidean planes in three-dimensional space</span> Flat surface

    In Euclidean geometry, a plane is a flat two-dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space . A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimal thin. While a pair of real numbers suffices to describe points on a plane, the relationship with out-of-plane points requires special consideration for their embedding in the ambient space .

    <span class="mw-page-title-main">Hyperplane</span> Subspace of n-space whose dimension is (n-1)

    In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is one less than that of the ambient space. Two lower-dimensional examples of hyperplanes are one-dimensional lines in a plane and zero-dimensional points on a line.

    <span class="mw-page-title-main">Normal (geometry)</span> Line or vector perpendicular to a curve or a surface

    In geometry, a normal is an object that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the line perpendicular to the tangent line to the curve at the point.

    <span class="mw-page-title-main">Projective space</span> Completion of the usual space with "points at infinity"

    In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines.

    In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points to Euclidean points, and vice versa.

    <span class="mw-page-title-main">Affine geometry</span> Euclidean geometry without distance and angles

    In mathematics, affine geometry is what remains of Euclidean geometry when ignoring the metric notions of distance and angle.

    <span class="mw-page-title-main">Affine space</span> Euclidean space without distance and angles

    In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. Affine space is the setting for affine geometry.

    In geometry, an incidence relation is a heterogeneous relation that captures the idea being expressed when phrases such as "a point lies on a line" or "a line is contained in a plane" are used. The most basic incidence relation is that between a point, P, and a line, l, sometimes denoted P I l. If P I l the pair (P, l) is called a flag. There are many expressions used in common language to describe incidence (for example, a line passes through a point, a point lies in a plane, etc.) but the term "incidence" is preferred because it does not have the additional connotations that these other terms have, and it can be used in a symmetric manner. Statements such as "line l1 intersects line l2" are also statements about incidence relations, but in this case, it is because this is a shorthand way of saying that "there exists a point P that is incident with both line l1 and line l2". When one type of object can be thought of as a set of the other type of object (viz., a plane is a set of points) then an incidence relation may be viewed as containment.

    In geometry, a half-space is either of the two parts into which a plane divides the three-dimensional Euclidean space. If the space is two-dimensional, then a half-space is called a half-plane. A half-space in a one-dimensional space is called a half-line or ray.

    In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance. In three-dimensional Euclidean space, a line and a plane that do not share a point are also said to be parallel. However, two noncoplanar lines are called skew lines. Line segments and Euclidean vectors are parallel if they have the same direction.

    In geometry, any hyperplane H of a projective space P may be taken as a hyperplane at infinity. Then the set complement PH is called an affine space. For instance, if (x1, ..., xn, xn+1) are homogeneous coordinates for n-dimensional projective space, then the equation xn+1 = 0 defines a hyperplane at infinity for the n-dimensional affine space with coordinates (x1, ..., xn). H is also called the ideal hyperplane.

    <span class="mw-page-title-main">Arrangement of hyperplanes</span> Partition of space by a hyperplanes

    In geometry and combinatorics, an arrangement of hyperplanes is an arrangement of a finite set A of hyperplanes in a linear, affine, or projective space S. Questions about a hyperplane arrangement A generally concern geometrical, topological, or other properties of the complement, M(A), which is the set that remains when the hyperplanes are removed from the whole space. One may ask how these properties are related to the arrangement and its intersection semilattice. The intersection semilattice of A, written L(A), is the set of all subspaces that are obtained by intersecting some of the hyperplanes; among these subspaces are S itself, all the individual hyperplanes, all intersections of pairs of hyperplanes, etc. (excluding, in the affine case, the empty set). These intersection subspaces of A are also called the flats ofA. The intersection semilattice L(A) is partially ordered by reverse inclusion.

    <span class="mw-page-title-main">Line (geometry)</span> Straight figure with zero width and depth

    In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimension one, which may be embedded in spaces of dimension two, three, or higher. The word line may also refer, in everyday life, to a line segment, which is a part of a line delimited by two points.

    <span class="mw-page-title-main">Oblique reflection</span> Non-perpendicular Euclidean reflection

    In Euclidean geometry, oblique reflections generalize ordinary reflections by not requiring that reflection be done using perpendiculars. If two points are oblique reflections of each other, they will still stay so under affine transformations.

    <span class="mw-page-title-main">Three-dimensional space</span> Geometric model of the physical space

    In geometry, a three-dimensional space is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may also refer colloquially to a subset of space, a three-dimensional region, a solid figure.

    Affine geometry, broadly speaking, is the study of the geometrical properties of lines, planes, and their higher dimensional analogs, in which a notion of "parallel" is retained, but no metrical notions of distance or angle are. Affine spaces differ from linear spaces in that they do not have a distinguished choice of origin. So, in the words of Marcel Berger, "An affine space is nothing more than a vector space whose origin we try to forget about, by adding translations to the linear maps." Accordingly, a complex affine space, that is an affine space over the complex numbers, is like a complex vector space, but without a distinguished point to serve as the origin.

    <span class="mw-page-title-main">Point reflection</span> Geometric symmetry operation

    In geometry, a point reflection is a transformation of affine space in which every point is reflected across a specific fixed point. When dealing with crystal structures and in the physical sciences the terms inversion symmetry, inversion center or centrosymmetric are more commonly used.

    References