Flatness (manufacturing)

Last updated

In manufacturing and mechanical engineering, flatness is an important geometric condition for workpieces and tools. Flatness is the condition of a surface or derived median plane having all elements in one plane. [1]

Contents

In the manufacture of precision parts and assemblies, especially where parts will be required to be connected across a surface area in an air-tight or liquid-tight manner, flatness is a critical quality of the manufactured surfaces. Such surfaces are usually machined or ground to achieve the required degree of flatness. High-definition metrology, such as digital holographic interferometry, of such a surface to confirm and ensure that the required degree of flatness has been achieved is a key step in such manufacturing processes. Flatness may be defined in terms of least squares fit to a plane ("statistical flatness") or worst-case (the distance between the two closest parallel planes within). It can be specified for a given area and/or over an entire surface.

Two parts that are flat to about 1  helium light band (HLB) can be "wrung" together, which means they will cling to each other when placed in contact. This phenomenon is commonly used with gauge blocks.

Geometric dimensioning and tolerancing has provided geometrically defined, quantitative ways of defining flatness operationally.

History

Joseph Whitworth popularized the first practical method of making accurate flat surfaces during the 1830s, using engineer's blue and scraping techniques on three trial surfaces, in what is known as Whitworth's three plates method. [2] By testing all three in pairs against each other, it is ensured that the surfaces become flat. Using two surfaces would result in a concave surface and a convex surface. Eventually a point is reached when many points of contact are visible within each square inch, at which time the three surfaces are uniformly flat to a very close tolerance.[ citation needed ]

Up until his introduction of the scraping technique, the same three plate method was employed using polishing techniques, giving less accurate results. This led to an explosion of development of precision instruments using these flat surface generation techniques as a basis for further construction of precise shapes.

Measures

ISO 12781-1 [3] defines several flatness measures:

The two-dimensional measures above find one-dimensional counterparts in straightness measures, [4] defined by ISO 12780 on a cross-section (the plane curve resulting from the intersection of the surface of interest and a plane spanned by the surface normal):

Related Research Articles

<span class="mw-page-title-main">Geodesy</span> Science of measuring the shape, orientation, and gravity of the Earth and other astronomical bodies

Geodesy is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems.

<span class="mw-page-title-main">Engineering drawing</span> Type of technical drawing used to define requirements for engineered items

An engineering drawing is a type of technical drawing that is used to convey information about an object. A common use is to specify the geometry necessary for the construction of a component and is called a detail drawing. Usually, a number of drawings are necessary to completely specify even a simple component. The drawings are linked together by a master drawing or assembly drawing which gives the drawing numbers of the subsequent detailed components, quantities required, construction materials and possibly 3D images that can be used to locate individual items. Although mostly consisting of pictographic representations, abbreviations and symbols are used for brevity and additional textual explanations may also be provided to convey the necessary information.

<span class="mw-page-title-main">Machine tool</span> Machine for handling or machining metal or other rigid materials

A machine tool is a machine for handling or machining metal or other rigid materials, usually by cutting, boring, grinding, shearing, or other forms of deformations. Machine tools employ some sort of tool that does the cutting or shaping. All machine tools have some means of constraining the workpiece and provide a guided movement of the parts of the machine. Thus, the relative movement between the workpiece and the cutting tool is controlled or constrained by the machine to at least some extent, rather than being entirely "offhand" or "freehand". It is a power-driven metal cutting machine which assists in managing the needed relative motion between cutting tool and the job that changes the size and shape of the job material.

<span class="mw-page-title-main">Geometric dimensioning and tolerancing</span> System for defining and representing engineering tolerances

Geometric dimensioning and tolerancing (GD&T) is a system for defining and communicating engineering tolerances via a symbolic language on engineering drawings and computer-generated 3D models that describes a physical object's nominal geometry and the permissible variation thereof. GD&T is used to define the nominal geometry of parts and assemblies, the allowable variation in size, form, orientation, and location of individual features, and how features may vary in relation to one another such that a component is considered satisfactory for its intended use. Dimensional specifications define the nominal, as-modeled or as-intended geometry, while tolerance specifications define the allowable physical variation of individual features of a part or assembly.

A datum reference or just datum is some important part of an object—such as a point, line, plane, hole, set of holes, or pair of surfaces—that serves as a reference in defining the geometry of the object and (often) in measuring aspects of the actual geometry to assess how closely they match with the nominal value, which may be an ideal, standard, average, or desired value. For example, on a car's wheel, the lug nut holes define a bolt circle that is a datum from which the location of the rim can be defined and measured. This matters because the hub and rim need to be concentric to within close limits. The concept of datums is used in many fields, including carpentry, metalworking, needlework, geometric dimensioning and tolerancing (GD&T), aviation, surveying, geodesy, and others.

<span class="mw-page-title-main">Screw thread</span> Helical structure used to convert between rotational and linear movement or force

A screw thread, often shortened to thread, is a helical structure used to convert between rotational and linear movement or force. A screw thread is a ridge wrapped around a cylinder or cone in the form of a helix, with the former being called a straight thread and the latter called a tapered thread. A screw thread is the essential feature of the screw as a simple machine and also as a threaded fastener.

<span class="mw-page-title-main">Surface plate</span> Flat surface used as a reference plane

A surface plate is a solid, flat plate used as the main horizontal reference plane for precision inspection, marking out (layout), and tooling setup. The surface plate is often used as the baseline for all measurements to a workpiece, therefore one primary surface is finished extremely flat with tolerances below 11.5 μm or 0.0115 mm per 2960 mm for a grade 0 plate. Surface plates are a common tool in the manufacturing industry and are often fitted with mounting points so that it can be an integrated structural element of a machine such as a coordinate-measuring machine, precision optical assembly, or other high precision scientific & industrial machine. Plates are typically square or rectangular, although they may be cut to any shape.

Product and manufacturing information, also abbreviated PMI, conveys non-geometric attributes in 3D computer-aided design (CAD) and Collaborative Product Development systems necessary for manufacturing product components and assemblies. PMI may include geometric dimensions and tolerances, 3D annotation (text) and dimensions, surface finish, and material specifications. PMI is used in conjunction with the 3D model within model-based definition to allow for the elimination of 2D drawings for data set utilization.

<span class="mw-page-title-main">Coordinate-measuring machine</span> Device for measuring the geometry of objects

A coordinate measuring machine (CMM) is a device that measures the geometry of physical objects by sensing discrete points on the surface of the object with a probe. Various types of probes are used in CMMs, the most common being mechanical and laser sensors, though optical and white light sensor do exist. Depending on the machine, the probe position may be manually controlled by an operator or it may be computer controlled. CMMs typically specify a probe's position in terms of its displacement from a reference position in a three-dimensional Cartesian coordinate system. In addition to moving the probe along the X, Y, and Z axes, many machines also allow the probe angle to be controlled to allow measurement of surfaces that would otherwise be unreachable.

Surface finish, also known as surface texture or surface topography, is the nature of a surface as defined by the three characteristics of lay, surface roughness, and waviness. It comprises the small, local deviations of a surface from the perfectly flat ideal.

Roundness is the measure of how closely the shape of an object approaches that of a mathematically perfect circle. Roundness applies in two dimensions, such as the cross sectional circles along a cylindrical object such as a shaft or a cylindrical roller for a bearing. In geometric dimensioning and tolerancing, control of a cylinder can also include its fidelity to the longitudinal axis, yielding cylindricity. The analogue of roundness in three dimensions is sphericity.

ASME Y14.41 is a standard published by American Society of Mechanical Engineers (ASME) which establishes requirements and reference documents applicable to the preparation and revision of digital product definition data, which pertains to CAD software and those who use CAD software to create the product definition within the 3D model. ASME issued the first version of this industrial standard on Aug 15, 2003 as ASME Y14.41-2003. It was immediately adopted by several industrial organizations, as well as the Department of Defense (DOD). The latest revision of ASME Y14.41 was issued on Jan 23, 2019 as ASME Y14.41-2019.

The ISO metric screw thread is the most commonly used type of general-purpose screw thread worldwide. They were one of the first international standards agreed when the International Organization for Standardization (ISO) was set up in 1947.

Tolerance analysis is the general term for activities related to the study of accumulated variation in mechanical parts and assemblies. Its methods may be used on other types of systems subject to accumulated variation, such as mechanical and electrical systems. Engineers analyze tolerances for the purpose of evaluating geometric dimensioning and tolerancing (GD&T). Methods include 2D tolerance stacks, 3D Monte Carlo simulations, and datum conversions.

ISO 128 is an international standard (ISO), about the general principles of presentation in technical drawings, specifically the graphical representation of objects on technical drawings.

Waviness is the measurement of the more widely spaced component of surface texture. It is a broader view of roughness because it is more strictly defined as "the irregularities whose spacing is greater than the roughness sampling length". It can occur from machine or work deflections, chatter, residual stress, vibrations, or heat treatment. Waviness should also be distinguished from flatness, both by its shorter spacing and its characteristic of being typically periodic in nature.

In metrology and the fields that it serves, total indicator reading (TIR), also known by the newer name full indicator movement (FIM), is the difference between the maximum and minimum measurements, that is, readings of an indicator, on the planar, cylindrical, or contoured surface of a part, showing its amount of deviation from flatness, roundness (circularity), cylindricity, concentricity with other cylindrical features, or similar conditions. The indicator traditionally would be a dial indicator; today dial-type and digital indicators coexist.

<span class="mw-page-title-main">Cylindrical coordinate measuring machine</span> Measuring machine

Cylindrical coordinate measuring machine or CCMM, is a special variation of a standard coordinate measuring machine (CMM) which incorporates a moving table to rotate the part relative to the probe. The probe moves perpendicular to the part axis and radial data is collected at regular angular intervals.

Geometrical Product Specification and Verification (GPS&V) is a set of ISO standards developed by ISO Technical Committee 213. The aim of those standards is to develop a common language to specify macro geometry and micro-geometry of products or parts of products so that the language can be used consistently worldwide.

References

  1. Meadows, James D. (2020), "Geometric Dimensioning and Tolerancing", Geometric Dimensioning and Tolerancing: Applications, Analysis, Gauging and Measurement [per ASME Y14.5-2018], ASME Press, pp. 1–19, doi:10.1115/1.859999_ch1, ISBN   9780578470481 , retrieved 2023-06-22
  2. "The Whitworth Three Plates Method". Eric Weinhoffer. 30 July 2017. Retrieved 2020-10-05.
  3. "ISO 12781-1:2011 - Geometrical product specifications (GPS) — Flatness — Part 1: Vocabulary and parameters of flatness". iso.org. Retrieved 2023-09-29.
  4. "ISO 12780-1:2011(en) Geometrical product specifications (GPS) — Straightness — Part 1: Vocabulary and parameters of straightness". iso.org. Retrieved 2023-09-29.