Flexible battery

Last updated
Flexible Li batteries have been embedded into dental braces for powering light-emitting diodes in light-assisted therapy Intra-oral flexible battery 2.jpg
Flexible Li batteries have been embedded into dental braces for powering light-emitting diodes in light-assisted therapy
A flexible lithium-ion polymer battery RouteJD's Flexible Lithium-ion Polymer Battery.png
A flexible lithium-ion polymer battery

Flexible batteries are batteries, both primary and secondary, that are designed to be conformal and flexible, unlike traditional rigid ones. They can maintain their characteristic shape even against continual bending or twisting. The increasing interest in portable and flexible electronics has led to the development of flexible batteries which can be implemented in products such as smart cards, wearable electronics, novelty packaging, flexible displays and transdermal drug delivery patches. [1] [2] The advantages of flexible batteries are their conformability, light weight, and portability, which makes them easy to be implemented in products such as flexible and wearable electronics. Hence efforts are underway to make different flexible power sources including primary and rechargeable batteries with high energy density and good flexibility.

Contents

Basic methods and designs

In general, a battery is made of one or several galvanic cells, where each cell consists of cathode, anode, separator, and in many cases current collectors. In flexible batteries all these components need to be flexible. These batteries can be fabricated into different shapes and sizes and by different methods. [3] One approach is to use polymer binders to fabricate composite electrodes where conductive additives are used to enhance their conductivity. The electrode materials can be printed or coated onto flexible substrates. The cells are assembled into flexible packaging materials to maintain bendability. Others approaches include the filtering of electrode suspension through filters to form free-standing films, or use flexible matrix to hold electrode materials. There are also other designs like cable batteries. [4]

Flexible secondary (rechargeable) batteries

There have been many efforts in adapting conventional batteries such as zinc-carbon and lithium ion, and at the same time new materials such as those based on nanoparticle complexes are being developed for flexible battery and supercapacitor electrodes. [5] For example, there are efforts at developing flexible lithium-ion batteries. Some studies have introduced nanocarbons into flexible lithium-ion batteries, and there are batteries with Li4Ti5O12 and LiFePO4 as anode and cathode, with graphene-based current collector. [6] Carbon nanotube electrodes have been reported too: pristine, [7] and combined with Li4Ti5O12, LiCoO2, [8] or SnO2. [9] Another development is the paper-thin flexible self-rechargeable battery that combines a thin-film organic solar cell with an extremely thin and highly flexible lithium-polymer battery. This recharges itself when exposed to light. [10]

Flexible primary batteries

Disposable, primary flexible primary batteries which are the equivalent of AA and AAA batteries are also of great interest with applicability in smart cards, medical patches, greeting cards, toys, and disposable devices. [11] Advantages of primary batteries with aqueous electrolyte over lithium ion batteries include their eco-friendliness and the ease of fabrication. A flexible zinc-carbon battery using single-walled carbon nanotubes was reported in 2010. [12]

Alkaline batteries are more durable than conventional zinc-carbon batteries under heavy load. An alkaline battery uses MnO2 as the active material along with zinc anode, and KOH is used as an electrolyte here. A flexible alkaline cell offers several challenges because compared to zinc-carbon cells using weak acidic or neutral electrolytes, KOH is more basic and corrosive. Gaikwad has proposed an alkaline battery using nylon mesh in 2011. [13]

Business and commercialization

Commercialization efforts for flexible lithium-ion and zinc-carbon systems are ongoing. LG is proposing to mass-produce a flexible cable battery. [14] The global market for thin film batteries increased from $33.5 million in 2011 to $51.8 million in 2012, and is estimated to be valued at $87.3 million by the end of 2013. [15] Manufacturers of zinc-based flexible disposable batteries include Printed Energy (Brisbane, QLD, AU), Blue Spark Technologies (Westlake, OH, US), FlexEl (College Park, MD, US), Printechnologics (Chemnitz, Germany), etc. While the suppliers of lithium-ion systems include GS NanoTech (Seoul, South Korea), Cymbet (Elk River, MN, USA), and Excellatron (Atlanta, GA, USA).

See also

Related Research Articles

<span class="mw-page-title-main">Electrode</span> Electrical conductor used to make contact with nonmetallic parts of a circuit

An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit. Electrodes are essential parts of batteries that can consist of a variety of materials depending on the type of battery.

<span class="mw-page-title-main">Lithium-ion battery</span> Rechargeable battery type

A lithium-ion or Li-ion battery is a type of rechargeable battery which uses the reversible reduction of lithium ions to store energy. The negative electrode of a conventional lithium-ion cell is typically graphite, a form of carbon. This negative electrode is sometimes called the anode as it acts as an anode during discharge. The positive electrode is typically a metal oxide and is sometimes called the cathode as it acts as a cathode during discharge. Positive and negative electrodes remain positive and negative in normal use whether charging or discharging and therefore are clearer terms than anode and cathode, which are reversed during charging.

<span class="mw-page-title-main">Lithium polymer battery</span> Lithium-ion battery using a polymer electrolyte

A lithium polymer battery, or more correctly lithium-ion polymer battery, is a rechargeable battery of lithium-ion technology using a polymer electrolyte instead of a liquid electrolyte. High conductivity semisolid (gel) polymers form this electrolyte. These batteries provide higher specific energy than other lithium battery types and are used in applications where weight is a critical feature, such as mobile devices, radio-controlled aircraft and some electric vehicles.

<span class="mw-page-title-main">Alkaline battery</span> Type of electrical cell

An alkaline battery is a type of primary battery where the electrolyte has a pH value above 7. Typically these batteries derive energy from the reaction between zinc metal and manganese dioxide.

<span class="mw-page-title-main">Zinc–air battery</span> High-electrical energy density storage device

Zinc–air batteries (non-rechargeable), and zinc–air fuel cells are metal–air batteries powered by oxidizing zinc with oxygen from the air. These batteries have high energy densities and are relatively inexpensive to produce. Sizes range from very small button cells for hearing aids, larger batteries used in film cameras that previously used mercury batteries, to very large batteries used for electric vehicle propulsion and grid-scale energy storage.

<span class="mw-page-title-main">Nanobatteries</span> Type of battery

Nanobatteries are fabricated batteries employing technology at the nanoscale, particles that measure less than 100 nanometers or 10−7 meters. These batteries may be nano in size or may use nanotechnology in a macro scale battery. Nanoscale batteries can be combined to function as a macrobattery such as within a nanopore battery.

<span class="mw-page-title-main">History of the battery</span> History of electricity source

Batteries provided the primary source of electricity before the development of electric generators and electrical grids around the end of the 19th century. Successive improvements in battery technology facilitated major electrical advances, from early scientific studies to the rise of telegraphs and telephones, eventually leading to portable computers, mobile phones, electric cars, and many other electrical devices.

A paper battery is engineered to use a spacer formed largely of cellulose. It incorporates nanoscopic scale structures to act as high surface-area electrodes to improve conductivity.

A nanowire battery uses nanowires to increase the surface area of one or both of its electrodes, which improves the capacity of the battery. Some designs, variations of the lithium-ion battery have been announced, although none are commercially available. All of the concepts replace the traditional graphite anode and could improve battery performance. Each type of nanowire battery has specific advantages and disadvantages, but a challenge common to all of them is their fragility.

<span class="mw-page-title-main">Lithium-ion capacitor</span> Hybrid type of capacitor

A lithium-ion capacitor is a hybrid type of capacitor classified as a type of supercapacitor. It is called a hybrid because the anode is the same as those used in lithium-ion batteries and the cathode is the same as those used in supercapacitors. Activated carbon is typically used as the cathode. The anode of the LIC consists of carbon material which is often pre-doped with lithium ions. This pre-doping process lowers the potential of the anode and allows a relatively high output voltage compared to other supercapacitors.

Rechargeable lithium metal batteries are secondary lithium metal batteries. They have metallic lithium as a negative electrode, sometimes referred to as the battery anode. The high specific capacity of lithium metal, very low redox potential and low density make it the ideal anode material for high energy density battery technologies. Rechargeable lithium metal batteries can have a long run time due to the high charge density of lithium. Several companies and many academic research groups are currently researching and developing rechargeable lithium metal batteries as they are considered a leading pathway for development beyond lithium-ion batteries. Some rechargeable lithium metal batteries employ a liquid electrolyte and some employ a solid-state electrolyte.

<span class="mw-page-title-main">Lithium–sulfur battery</span> Type of rechargeable battery

The lithium–sulfur battery is a type of rechargeable battery. It is notable for its high specific energy. The low atomic weight of lithium and moderate atomic weight of sulfur means that Li–S batteries are relatively light. They were used on the longest and highest-altitude unmanned solar-powered aeroplane flight by Zephyr 6 in August 2008.

<span class="mw-page-title-main">Thin-film lithium-ion battery</span> Type of battery

The thin film lithium-ion battery is a form of solid-state battery. Its development is motivated by the prospect of combining the advantages of solid-state batteries with the advantages of thin-film manufacturing processes.

A solid-state battery uses solid electrodes and a solid electrolyte, instead of the liquid or polymer gel electrolytes found in lithium-ion or lithium polymer batteries.

Nanoarchitectures for lithium-ion batteries are attempts to employ nanotechnology to improve the design of lithium-ion batteries. Research in lithium-ion batteries focuses on improving energy density, power density, safety, durability and cost.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

A potassium-ion battery or K-ion battery is a type of battery and analogue to lithium-ion batteries, using potassium ions for charge transfer instead of lithium ions. It was invented by the Iranian/American chemist Ali Eftekhari in 2004.

Research in lithium-ion batteries has produced many proposed refinements of lithium-ion batteries. Areas of research interest have focused on improving energy density, safety, rate capability, cycle durability, flexibility, and cost.

A zinc-ion battery or Zn-ion battery (abbreviated as ZIB) uses zinc ions (Zn2+) as the charge carriers. Specifically, ZIBs utilize Zn as the anode, Zn-intercalating materials as the cathode, and a Zn-containing electrolyte. Generally, the term zinc-ion battery is reserved for rechargeable (secondary) batteries, which are sometimes also referred to as rechargeable zinc metal batteries (RZMB). Thus, ZIBs are different than non-rechargeable (primary) batteries which use zinc, such as alkaline or zinc–carbon batteries.

<span class="mw-page-title-main">History of the lithium-ion battery</span> Overview of the events of the development of lithium-ion battery

This is a history of the lithium-ion battery.

References

  1. "Samsung, LG to release flexible display-equipped smartphones in 2H14, says report". Digitimes. 26 June 2014. Archived from the original on June 29, 2014. Retrieved July 1, 2014.
  2. "Ultrasensitive flexible and wearable bionic sensors". Printedelectronicsworld.com. 5 June 2014. Retrieved 19 November 2014.
  3. Tehrani, Z.; Korochkina, T.; Govindarajan, S.; Thomas, D.J.; o'Mahony, J.; Kettle, J.; Claypole, T.C.; Gethin, D.T. (2015-11-01). "Ultra-thin flexible screen printed rechargeable polymer battery for wearable electronic applications". Organic Electronics. 26: 386–394. doi:10.1016/j.orgel.2015.08.007. ISSN   1566-1199.
  4. "LG Chem to mass produce cable batteries in the near future". English.yonhapnews.co.kr. 2013-10-08.
  5. Tehrani, Z.; Korochkina, T.; Govindarajan, S.; Thomas, D. J.; O’Mahony, J.; Kettle, J.; Claypole, T. C.; Gethin, D. T. (2015-11-01). "Ultra-thin flexible screen printed rechargeable polymer battery for wearable electronic applications". Organic Electronics. 26: 386–394. doi:10.1016/j.orgel.2015.08.007. ISSN   1566-1199.
  6. Li, N.; Chen, Z.; Ren, W.; Li, F.; Cheng, H. M. (2012). "Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates". Proceedings of the National Academy of Sciences of the United States of America. 109 (43): 17360–17365. Bibcode:2012PNAS..10917360L. doi: 10.1073/pnas.1210072109 . PMC   3491507 . PMID   23045691.
  7. Pushparaj, V. L.; Shaijumon, M. M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Linhardt, R. J.; Nalamasu, O.; Ajayan, P. M. (2007). "Flexible energy storage devices based on nanocomposite paper". Proceedings of the National Academy of Sciences. 104 (34): 13574–13577. Bibcode:2007PNAS..10413574P. doi: 10.1073/pnas.0706508104 . PMC   1959422 . PMID   17699622.
  8. Hu, Liangbing; Wu, Hui; La Mantia, Fabio; Yang, Yuan; Cui, Yi (2010). "Thin, Flexible Secondary Li-Ion Paper Batteries". ACS Nano. 4 (10): 5843–5848. doi:10.1021/nn1018158. PMID   20836501.
  9. Noerochim, Lukman; Wang, Jia-Zhao; Chou, Shu-Lei; Wexler, David; Liu, Hua-Kun (2012). "Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries". Carbon. 50 (3): 1289–1297. doi:10.1016/j.carbon.2011.10.049.
  10. Hamilton, Tyler (April 4, 2007) Flexible Batteries That Never Need to Be Recharged. Technology Review
  11. "Queue | Ultra-thin flexible screen printed rechargeable polymer battery for wearable electronic applications - KUNDOC.COM". kundoc.com. Retrieved 2018-07-28.
  12. Hiralal, Pritesh; Imaizumi, Shinji; Unalan, Husnu Emrah; Matsumoto, Hidetoshi; Minagawa, Mie; Rouvala, Markku; Tanioka, Akihiko; Amaratunga, Gehan A. J. (2010). "Nanomaterial-Enhanced All-Solid Flexible Zinc−Carbon Batteries". ACS Nano. 4 (5): 2730–2734. doi:10.1021/nn901391q. PMID   20415426.
  13. Gaikwad, Abhinav M.; Whiting, Gregory L.; Steingart, Daniel A.; Arias, Ana Claudia (2011). "Highly Flexible, Printed Alkaline Batteries Based on Mesh-Embedded Electrodes". Advanced Materials. 23 (29): 3251–3255. Bibcode:2011AdM....23.3251G. doi:10.1002/adma.201100894. PMID   21661062. S2CID   1078155.
  14. "LG Chem to mass produce cable batteries in the near future". English.yonhapnews.co.kr. Archived from the original on 10 August 2014. Retrieved 19 November 2014.
  15. Gagliardi, Margareth (2013) Global Markets and Technologies for Thin-Film Batteries. BCC Research. ISBN   1-56965-525-1