Foamy bark canker

Last updated
Foamy bark canker
Causal agents Geosmithia sp.#41
Hosts Oak trees
VectorsWestern oak bark beetle ( Pseudopityophthorus pubipennis )
EPPO Code GEOHPA
DistributionCalifornia

The foamy bark canker is a disease affecting oak trees in California caused by the fungus Geosmithia sp. #41 and spread by the Western oak bark beetle ( Pseudopityophthorus pubipennis ). This disease is only seen through the symbiosis of the bark beetles and the fungal pathogen. The bark beetles target oak trees and bore holes through the peridermal tissues, making tunnels within the phloem. The fungal spores are brought into these tunnels by the beetles and begin to colonize the damaged cells inside the tunnels. Symptoms of the developing fungus include wet discoloration seeping from the beetle entry holes as the fungus begins to consume phloem and likely other tissues. If bark is removed, necrosis of the phloem can be observed surrounding the entry hole(s). As the disease progresses, a reddish sap and foamy liquid oozes from entry holes, thus giving the disease the name foamy bark canker. Eventually, after the disease has progressed, the tree dies. This disease is important because of its detrimental effects on oak trees and its ability to spread to several new Californian counties in just a couple of years.

Contents

Hosts and symptoms

Hosts associated with Geosmithia sp. #41 include a number of tree species, including oak and other hardwoods, pine and spruce trees, depending on the beetle vector. [1] In this case, the western oak bark beetles target live oak trees of the western United States. Beetles tend to attack stressed trees that are already weakened from drought or injury. Symptoms causing branch dieback and tree death also include a cinnamon-colored gum seeping from multiple beetle entry holes on the bole, followed by a prolific, cream-colored foamy liquid. [2] These symptoms, as well as signs (entry holes, larvae, beetles) of bark beetles, are key factors in diagnosis. Necrosis of xylem and phloem tissues underneath bark can be observed.

Common symptoms include: [3]

Infected tree on Stanford campus (July 2022) InfectedtreeonStanfordcampus.jpg
Infected tree on Stanford campus (July 2022)
Closeup of infection showing weeping and foaming on oak tree. CloseupofInfectedTreeStanford.jpg
Closeup of infection showing weeping and foaming on oak tree.

Geosmithia putterillii

Foamy bark canker
Scientific classification
Kingdom:
Division:
Subdivision:
Class:
Order:
Family:
Genus:
Geosmithia
Type species
Geosmithia putterillii

Geosmithia putterillii, also known as Geosmithia pallida, is a species of fungus of the genus Geosmithia, which was named by Australian mycologist John Pitt in 1979, [4] is widely distributed and contains 10 species. [5]

Disease cycle

The western bark beetle carries Geosmithia sp. #41 and burrows into the host tree, depositing the fungus inside the phloem where the female beetle lays its eggs. As more beetles are produced, the fungus is picked up and transported to other areas of the host or another host. Conidia spores of Geosmithia sp. #41 are known to function in reproduction of the fungus. [6] Some species of the genus Geosmithia are known to produce apothecia, however it is unclear whether Geosmithia sp. #41 produces this type of spore dispersing structure. The western oak bark beetle is a known vector for transmission of Geosmithia sp. #41 and is responsible for infecting oak tree hosts with fungal inoculum. The beetles may also be responsible for dispersing conidia spores among coast live oak trees. [7] However, it is unclear how the fungus becomes associated with the bark beetles that eventually make their way into the phloem of oak trees. It is possible that spores (or spore-producing structures) are picked up on the soil surface, on woody debris, or on the bark of trees as beetles make their way to oak tree hosts. Spores may attach to the exterior of the beetles, however, this mechanism of association is still unknown. Once the bark beetles have begun tunneling through and consuming phloem tissue, Geosmithia sp. #41 is "dropped" or dispersed throughout the tunnels and is able to begin growth within damaged tissues nearby. The fungus is then able to continue reproduction (by production of conidia), thereby causing disease, once inside the phloem.[ citation needed ]

Environment

This disease has been found in the southern coastal regions of California where the climate is mild and constant year-round. A warm, Mediterranean climate is favored by this disease. [8] The pathogen relies on the bark beetle as a vector for dispersal and infection of the host. Bark beetles generally have two or more generations in a single year, [9] leading to disease symptoms in multiple seasons. Because of the multiple generations of bark beetles constantly transporting the fungus, this disease could be considered to be polycyclic if the beetles spread to new hosts.[ citation needed ]

Management

Control of the beetle vector is the most effective management technique for disease prevention. Conventional methods of tree thinning and the use of insecticides have been used to combat the western bark beetles, but are only effective before the beetles have colonized and before the fungus has invaded the tree. [10] Other cultural techniques of sanitation and overall health of the oak trees by keeping up with watering, fertilizer or mulch needs, and pruning may help. It is very important to diagnose foamy bark canker disease correctly and promptly in order to manage the disease properly because if a tree is already infected, the removal of the tree is the most effective way to prevent the disease from spreading.[ citation needed ]

Importance

Although the disease is caused by a relatively new symbiosis, it has already spread to a number of different counties, and is completely wiping out oak trees. As mentioned before, this is partially due to disease symptoms that are similar to other diseases leading to a misdiagnosis; it most resembles bacterial wetwood, polyphagous shot hole borer, and fusarium dieback. With the recent outbreak and growth in population of the western bark beetle, there is concern that the pathogen's range will expand. Oak trees are important for wildlife diversity and for the ecological services they provide like habitat, shelter and food. [11]

Related Research Articles

<i>Pinus elliottii</i> Species of conifer tree

Pinus elliottii, commonly known as slash pine, is a conifer tree native to the Southeastern United States. Slash pine is named after the "slashes" – swampy ground overgrown with trees and bushes – that constitute its habitat. Other common names include swamp pine, yellow slash pine, and southern Florida pine. Slash pine has two different varieties: P. e. var. elliottii and P. e. var. densa. Historically, slash pine has been an important economic timber for naval stores, turpentine, and resin. The wood of slash pine is known for its unusually high strength, especially for a pine. It exceeds many hardwoods and is even comparable to very dense woods such as ironwood.

Ambrosia beetles are beetles of the weevil subfamilies Scolytinae and Platypodinae, which live in nutritional symbiosis with ambrosia fungi. The beetles excavate tunnels in dead or stressed trees in which they cultivate fungal gardens, their sole source of nutrition. After landing on a suitable tree, an ambrosia beetle excavates a tunnel in which it releases its fungal symbiont. The fungus penetrates the plant's xylem tissue, extracts nutrients from it, and concentrates the nutrients on and near the surface of the beetle gallery. Ambrosia fungi are typically poor wood degraders, and instead utilize less demanding nutrients. Symbiotic fungi produce and detoxify ethanol, which is an attractant for ambrosia beetles and likely prevents growth of antagonistic pathogens and selects for other beneficial symbionts. The majority of ambrosia beetles colonize xylem of recently dead trees, but some attack stressed trees that are still alive, and a few species attack healthy trees. Species differ in their preference for different parts of trees, different stages of deterioration, and in the shape of their tunnels ("galleries"). However, the majority of ambrosia beetles are not specialized to any taxonomic group of hosts, unlike most phytophagous organisms including the closely related bark beetles. One species of ambrosia beetle, Austroplatypus incompertus exhibits eusociality, one of the few organisms outside of Hymenoptera and Isoptera to do so.

<span class="mw-page-title-main">Bark beetle</span> Subfamily of beetles

A bark beetle is the common name for the subfamily of beetles Scolytinae. Previously, this was considered a distinct family (Scolytidae), but is now understood to be a specialized clade of the "true weevil" family (Curculionidae). Although the term "bark beetle" refers to the fact that many species feed in the inner bark (phloem) layer of trees, the subfamily also has many species with other lifestyles, including some that bore into wood, feed in fruit and seeds, or tunnel into herbaceous plants. Well-known species are members of the type genus Scolytus, namely the European elm bark beetle S. multistriatus and the large elm bark beetle S. scolytus, which like the American elm bark beetle Hylurgopinus rufipes, transmit Dutch elm disease fungi (Ophiostoma). The mountain pine beetle Dendroctonus ponderosae, southern pine beetle Dendroctonus frontalis, and their near relatives are major pests of conifer forests in North America. A similarly aggressive species in Europe is the spruce ips Ips typographus. A tiny bark beetle, the coffee berry borer, Hypothenemus hampei is a major pest on coffee plantations around the world.

<span class="mw-page-title-main">Canker</span> Common name for a tree disease

A plant canker is a small area of dead tissue, which grows slowly, often over years. Some cankers are of only minor consequence, but others are ultimately lethal and therefore can have major economic implications for agriculture and horticulture. Their causes include a wide range of organisms as fungi, bacteria, mycoplasmas and viruses. The majority of canker-causing organisms are bound to a unique host species or genus, but a few will attack other plants. Weather and animal damage can also cause stress to the plant resulting in cankers. Other causes of cankers is pruning when the bark is wet or using un-sterilized tools.

<i>Ophiostoma ulmi</i> Species of fungus

Ophiostoma ulmi is a species of fungus in the family Ophiostomataceae. It is one of the causative agents of Dutch elm disease. It was first described under the name Graphium ulmi, and later transferred to the genus Ophiostoma.

<i>Alternaria alternata</i> Pathogenic fungus

Alternaria alternata is a fungus causing leaf spots, rots, and blights on many plant parts, and other diseases. It is an opportunistic pathogen on over 380 host species of plant.

<i>Botryosphaeria dothidea</i> Species of fungus

Botryosphaeria dothidea is a plant pathogen that causes the formation of cankers on a wide variety of tree and shrub species. It has been reported on several hundred plant hosts and on all continents except Antarctica. B. dothidea was redefined in 2004, and some reports of its host range from prior to that time likely include species that have since been placed in another genus. Even so, B. dothidea has since been identified on a number of woody plants—including grape, mango, olive, eucalyptus, maple, and oak, among others—and is still expected to have a broad geographical distribution. While it is best known as a pathogen, the species has also been identified as an endophyte, existing in association with plant tissues on which disease symptoms were not observed. It can colonize some fruits, in addition to woody tissues.

<i>Nectria cinnabarina</i> Fungal plant pathogen

Nectria cinnabarina, also known as coral spot, is a plant pathogen that causes cankers on broadleaf trees. This disease is polycyclic and infects trees in the cool temperate regions of the Northern Hemisphere. N. cinnabarina is typically saprophytic, but will act as a weak parasite if presented with an opportunity via wounds in the tree or other stressors that weaken the tree's defense to the disease. A study published in 2011 showed that this complex consists of at least 4 distinct species. There are only a few ways to manage this disease with techniques such as sanitation and pruning away branches that have the cankers. N. cinnabarina is not as significant a problem as other Nectria spp., some of which are the most important pathogens to infect hardwood trees.

The plant pathogenic fungus Leucostoma kunzei is the causal agent of Leucostoma canker, a disease of spruce trees found in the Northern Hemisphere, predominantly on Norway spruce and Colorado blue spruce. This disease is one of the most common and detrimental stem diseases of Picea species in the northeastern United States, yet it also affects other coniferous species. Rarely does it kill its host tree; however, the disease does disfigure by killing host branches and causing resin exudation from perennial lesions on branches or trunks.

Eutypella canker is a plant disease caused by the fungal pathogen Eutypella parasitica. This disease is capable of infecting many species of maple trees and produces a large, distinguishable canker on the main trunk of the tree. Infection and spread of the disease is accomplished with the release of ascospores from perithecia. Therefore, the best way to manage the Eutypella canker is to remove trees that have been infected. If infected, it can decrease the quality of wood cut for lumber and can thus have a negative economic impact.

<i>Phytophthora kernoviae</i> Species of oomycete

Phytophthora kernoviae is a plant pathogen that mainly infects European beech and Rhododendron ponticum. It was first identified in 2003 in Cornwall, UK when scientists were surveying for the presence of Phytophthora ramorum. This made it the third new Phytophthora species to be found in the UK in a decade. It was named Phytophthora kernoviae after the ancient name for Cornwall, Kernow. It causes large stem lesions on beech and necrosis of stems and leaves of Rhododendron ponticum. It is self-fertile. It has also been isolated from Quercus robur and Liriodendron tulipifera. The original paper describing the species, stated it can infect Magnolia and Camellia species, Pieris formosa, Gevuina avellana, Michelia doltsopa and Quercus ilex. Since then many other plants have been identified as natural hosts of the pathogen. Molecular analysis has revealed that an infection on Pinus radiata, recorded in New Zealand in 1950, was caused by P. kernoviae. The pathogen was also noted on Drimys winteri, Gevuina avellana, Ilex aquifolium, Quercus ilex, Vaccinium myrtillus, Hedera helix, Podocarpus salignas.

<span class="mw-page-title-main">Thousand cankers disease</span> Disease of walnut trees

Thousand cankers disease (TCD) is a recently recognized disease of certain walnuts. The disease results from the combined activity of the walnut twig beetle and a canker producing fungus, Geosmithia morbida. Until July 2010 the disease was only known to the western United States where over the past decade it has been involved in several large scale die-offs of walnut, particularly black walnut, Juglans nigra. However, in late July 2010 a well-established outbreak of the disease was found in the Knoxville, Tennessee, area. This new finding is the first locating it within the native range of its susceptible host, black walnut. In 2013, an outbreak was found in the Veneto region of Italy, where the disease has been found on both black walnut and English walnut.

Bot canker of oak is a disease on stems, branches and twigs of oak trees in Europe and North America. The casual agent of Bot canker of oak is the fungus Botryosphaeria corticola. Bot canker of oak causes lesions and cankers on a wide range of oaks in Europe and most recently live oaks in North America. Some infections were formerly attributed to Botryosphaeria stevensii, but most likely represent infections by Botryosphaeria corticola. Botryosphaeria corticola is distinguishable from Botryosphaeria stevensii via ITS rDNA sequencing.

<i>Geosmithia morbida</i> Species of fungus

Geosmithia morbida is a species of anamorphic fungus in the Bionectriaceae family that, together with the activity of the walnut twig beetle, causes thousand cankers disease in species of walnut trees. It was described as new to science in 2010 from specimens collected in the southern United States. The fungus, transmitted by the walnut twig beetle, Pityophthorus juglandis, is known from the western USA from California to Colorado. The cankers resulting from infection restrict nutrient flow and typically kill the host tree within three to four years. Based on closeness of internal transcribed spacer DNA, the closest relative of G. morbida is G. fassatiae. The specific epithet morbida refers to the deadly pathogenic effect it has on its host.

Leucostoma canker is a fungal disease that can kill stone fruit. The disease is caused by the plant pathogens Leucostoma persoonii and Leucostoma cinctum (teleomorph) and Cytospora leucostoma and Cytospora cincta (anamorphs). The disease can have a variety of signs and symptoms depending on the part of the tree infected. One of the most lethal symptoms of the disease are the Leucostoma cankers. The severity of the Leucostoma cankers is dependent on the part of the plant infected. The fungus infects through injured, dying or dead tissues of the trees. Disease management can consist of cultural management practices such as pruning, late season fertilizers or chemical management through measures such as insect control. Leucostoma canker of stone fruit can cause significant economic losses due to reduced fruit production or disease management practices. It is one of the most important diseases of stone fruit tree all over the world.

Pityophthorus juglandis, also known as the walnut twig beetle for feeding on several different species of walnut trees, Juglans, is one of only a few species in the genus Pityophthorus that is associated with hardwoods and the only one associated with feeding on walnut trees.

<span class="mw-page-title-main">Pine-pine gall rust</span> Fungal disease of pine trees

Pine-pine gall rust, also known as western gall rust, is a fungal disease of pine trees. It is caused by Endocronartium harknessii, an autoecious, endocyclic, rust fungus that grows in the vascular cambium of the host. The disease is found on pine trees with two or three needles, such as ponderosa pine, jack pine and scots pine. It is very similar to pine-oak gall rust, but its second host is another Pinus species. The fungal infection results in gall formation on branches or trunks of infected hosts. Gall formation is typically not detrimental to old trees, but has been known to kill younger, less stable saplings. Galls can vary from small growths on branch extremities to grapefruit-sized galls on trunks.

<span class="mw-page-title-main">Hypoxylon canker of shade trees</span> Tree disease

Hypoxylon canker of shade trees is a weak ascomycete fungus that negatively affects growth and can eventually lead to the death of already dying or diseased host trees. There are many different species that affect different trees. For example, Hypoxylon atropunctatum, a common species, is found on oak trees, Hypoxylon tinctor affects sycamore trees, and Hypoxylon mammatum infests aspen trees.

<i>Platypus apicalis</i> Wood-boring beetle endemic to New Zealand

Platypus apicalis, known by its common name the New Zealand pinhole boring beetle, is a wood-boring beetle endemic to New Zealand and found throughout the North and South Island in a range of environments.

<span class="mw-page-title-main">Cypress canker</span> Plant fungal disease

Cypress canker is a disease affecting Cupressus species, caused by one of several species of fungus in the genus Seiridium. Infection causes die-back of twigs and branches in susceptible cypress trees, with rapidly increasing amounts of damage and the death of the tree.

References

  1. Jankowiak, R. et al. "Association of "Geosmithia" fungi (Ascomycota: Hypocreales) with pine- and spruce-infesting bark beetles in Poland." "Fungal Ecology" 11 (2014): 71-79.
  2. Lynch, S.C. et al. ″First Report of "Geosmithia pallida" Causing Foamy Bark Canker, a New Disease on Coast Live Oak ("Quercus agrifolia") in Association with "Pseudopityophthorus pubipennis" in California." "Plant Disease" 98 (2014): 1276-1277.
  3. Lynch, Shannon, Paul Rugman-Jones, and Richard Stouthamer. "Pest Alert: Geosmithia Pallida and Western Oak Bark Beetle." Geosmithia Pallida and Western Oak Bark Beetle ( Pseudopityophthorus Pubipennis) (n.d.): n. pag. Eskalen Lab: Foamy Bark Canker Disease. University of California, Riverside. Web.
  4. Pitt JI. (1979). "Geosmithia, gen. nov. for Penicillium lavendulum and related species". Canadian Journal of Botany . 57 (19): 2021–30. doi:10.1139/b79-252.
  5. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008). Dictionary of the Fungi (10th ed.). Wallingford, UK: CABI. p. 281. ISBN   978-0-85199-826-8.
  6. Kolarik, Kubatova, Cepicka, Pazoutova, and Srutka. "Mycological Research: A Complex of Three New White-spored, Sympatric, and Host Range Limited Geosmithia Species." Cambridge Journals Online. Charles University - Czech Republic, 2005. Web.
  7. McPherson, Brice A. et al. "Fungal species assemblages associated with Phytophthora ramorum-infected coast live oaks following bark and ambrosia beetle colonization in northern California." "Forest Ecology and Management" 291 (2013): 30-42.
  8. Kolarik, Miroslav, Martin Kostovcik, and Sylvie Pazoutova. "Host Range and Diversity of the Genus Geosmithia (Ascomycota: Hypocreales) Living in Association with Bark Beetles in the Mediterranean Area." Mycological Research 3.11 (2007): 1298-30. Science Direct. Nov. 2007. Web. 01 Dec. 2014.
  9. Seybold, S. J., T. D. Paine, and S. H. Dreistadt. "How to Manage Pests." UC IMP Online. University of California Statewide IPM Program, Nov. 2008. Web.
  10. U.S. Forest Service. "Western Bark Beetle Strategy." Western Bark Beetle Strategy (2011): n. pag. Human Safety, Recovery and Resiliency. U.S. Forest Service, 11 July 2011. Web.
  11. Ober, Holly K. "The Value of Oaks to Wildlife1." EDIS New Publications RSS. University of Florida IFAS Extension, n.d. Web. 01 Dec. 2014.