Four-current

Last updated

In special and general relativity, the four-current (technically the four-current density) [1] is the four-dimensional analogue of the current density, with units of charge per unit time per unit area. Also known as vector current, it is used in the geometric context of four-dimensional spacetime , rather than separating time from three-dimensional space. Mathematically it is a four-vector and is Lorentz covariant.

Contents

This article uses the summation convention for indices. See covariance and contravariance of vectors for background on raised and lowered indices, and raising and lowering indices on how to switch between them.

Definition

Using the Minkowski metric of metric signature (+ − − −), the four-current components are given by:

where:

Motion of charges in spacetime

This can also be expressed in terms of the four-velocity by the equation: [2] [3]

where:

Qualitatively, the change in charge density (charge per unit volume) is due to the contracted volume of charge due to Lorentz contraction.

Physical interpretation

Charges (free or as a distribution) at rest will appear to remain at the same spatial position for some interval of time (as long as they're stationary). When they do move, this corresponds to changes in position, therefore the charges have velocity, and the motion of charge constitutes an electric current. This means that charge density is related to time, while current density is related to space.

The four-current unifies charge density (related to electricity) and current density (related to magnetism) in one electromagnetic entity.

Continuity equation

In special relativity, the statement of charge conservation is that the Lorentz invariant divergence of J is zero: [4]

where is the four-gradient. This is the continuity equation.

In general relativity, the continuity equation is written as:

where the semi-colon represents a covariant derivative.

Maxwell's equations

The four-current appears in two equivalent formulations of Maxwell's equations, in terms of the four-potential [5] when the Lorenz gauge condition is fulfilled:

where is the D'Alembert operator, or the electromagnetic field tensor:

where μ0 is the permeability of free space and ∇α is the covariant derivative.

General relativity

In general relativity, the four-current is defined as the divergence of the electromagnetic displacement, defined as:

then:

Quantum field theory

The four-current density of charge is an essential component of the Lagrangian density used in quantum electrodynamics. [6] In 1956 Gershtein and Zeldovich considered the conserved vector current (CVC) hypothesis for electroweak interactions. [7] [8] [9]

See also

Related Research Articles

<span class="mw-page-title-main">Kaluza–Klein theory</span> Unified field theory

In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. In their setup,the vacuum has the usual 3 dimensions of space and one dimension of time but with another microscopic extra spatial dimension in the shape of a tiny circle. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

In the special theory of relativity, four-force is a four-vector that replaces the classical force.

<span class="mw-page-title-main">Electromagnetic four-potential</span> Relativistic vector field

An electromagnetic four-potential is a relativistic vector function from which the electromagnetic field can be derived. It combines both an electric scalar potential and a magnetic vector potential into a single four-vector.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

<span class="mw-page-title-main">Electromagnetic stress–energy tensor</span>

In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

<span class="mw-page-title-main">Inhomogeneous electromagnetic wave equation</span> Equation in physics

In electromagnetism and applications, an inhomogeneous electromagnetic wave equation, or nonhomogeneous electromagnetic wave equation, is one of a set of wave equations describing the propagation of electromagnetic waves generated by nonzero source charges and currents. The source terms in the wave equations make the partial differential equations inhomogeneous, if the source terms are zero the equations reduce to the homogeneous electromagnetic wave equations. The equations follow from Maxwell's equations.

The harmonic coordinate condition is one of several coordinate conditions in general relativity, which make it possible to solve the Einstein field equations. A coordinate system is said to satisfy the harmonic coordinate condition if each of the coordinate functions xα satisfies d'Alembert's equation. The parallel notion of a harmonic coordinate system in Riemannian geometry is a coordinate system whose coordinate functions satisfy Laplace's equation. Since d'Alembert's equation is the generalization of Laplace's equation to space-time, its solutions are also called "harmonic".

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

<span class="mw-page-title-main">Classical electromagnetism and special relativity</span> Relationship between relativity and pre-quantum electromagnetism

The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electric or magnetic laws. It motivates a compact and convenient notation for the laws of electromagnetism, namely the "manifestly covariant" tensor form.

<span class="mw-page-title-main">Dirac equation in curved spacetime</span> Generalization of the Dirac equation

In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References

  1. Rindler, Wolfgang (1991). Introduction to Special Relativity (2nd ed.). Oxford Science Publications. pp. 103–107. ISBN   978-0-19-853952-0.
  2. Roald K. Wangsness, Electromagnetic Fields, 2nd edition (1986), p. 518, 519
  3. Melvin Schwartz, Principles of Electrodynamics, Dover edition (1987), p. 122, 123
  4. J. D. Jackson, Classical Electrodynamics, 3rd Edition (1999), p. 554
  5. as [ref. 1, p519]
  6. Cottingham, W. Noel; Greenwood, Derek A. (2003). An introduction to the standard model of particle physics. Cambridge University Press. p. 67. ISBN   9780521588324.
  7. Marshak, Robert E. (1993). Conceptual foundations of modern particle physics . World Scientific Publishing Company. p.  20. ISBN   9789813103368.
  8. Gershtein, S. S.; Zeldovich, Y. B. (1956), Soviet Phys. JETP, 2 576.
  9. Thomas, Anthony W. (1996). "CVC in particle physics". arXiv: nucl-th/9609052 .